RO filtration of biologically treated textile and dyeing effluents using ozonation as a pre-treatment

2010 ◽  
Vol 62 (4) ◽  
pp. 751-758 ◽  
Author(s):  
H. Y. Wang ◽  
Y. T. Guan ◽  
T. Mizuno ◽  
H. Tsuno

Bench-scale experiments were conducted to investigate the application of ozonation pre-treatment for biologically treated textile and dyeing wastewater to improve performance of the RO process. Based on ozonation experiments, four specific ozone consumptions (SOC), 0, 0.3, 0.6, 4.0 mg O3/mg DOC0 were chosen for study of the effects of ozonation on the reverse osmosis (RO) process. Membrane flux was recorded. Also, the permeate water quality parameters such as TOC, conductivity were analyzed. In addition, fouled membrane cleaning was studied. The study further examined the nature and mechanisms of membrane fouling using scanning electron microscopy (SEM) and the energy dispersive X-ray spectrometer (EDS). The effect of ozonation on RO filtration was found to depend on SOC. The study revealed that significant improvement can be achieved in the efficiency of RO filtration by employing ozonation with 0.6 mg O3/mg DOC0 SOC. Although the product water purity slightly decreased, the ozonation pre-treatment showed advantages at 0.6 mg O3/mg DOC0 SOC for the following: (i) mitigation of flux decline due to membrane fouling; (ii) improvement in foulants cleanability. In addition, hypotheses were put forward to explain the reasons from the aspect of organic matter characteristics changed by ozonation, such as changing on functional groups and molecular weight of organic matter.

2000 ◽  
Vol 41 (10-11) ◽  
pp. 327-335 ◽  
Author(s):  
S. Babel ◽  
S. Takizawa

Batch filtration experiments in dead-end mode were carried out to investigate the membrane fouling phenomenon due to Chlorella deposition and to analyse the effectiveness of pretreatment techniques to control membrane fouling. Experiments were also conducted to identify efficient and effective physical and chemical methods for cleaning the membrane. For both cellulose acetate and PVDF membranes, the effect of algal concentration was found similar. Initially when the deposition was less, the flux was high and the resistance was very low or negligible. As the deposition increased, the resistance increased exponentially. With further increase in deposition, the resistance increases linearly at a constant rate. Among the three pre-treatment techniques studied, coagulation with alum and ozonation were effective in controlling the fouling of membrane. Chlorine pretreatment was not effective in reducing the algal cake resistance because it brought about an extensive cell lysis. Photographs taken by Scanning Electron Microscope (SEM) showed damage to the cell surface architecture and release of organic matter to the medium after chlorination. Ozone pretreatment was more effective than chlorine in disintegrating only the extracelluar organic matter (EOM) without causing cell lysis, thus bringing down the algal cake resistance. Cleaning experiments after algal filtration without pre-treatment showed that physical cleaning was less effective than chemical cleaning. All four chemicals tested for membrane cleaning could reduce the cake resistance by more than 99%.


2016 ◽  
Vol 6 (4) ◽  
pp. 533-543 ◽  
Author(s):  
W. D. Wang ◽  
M. Esparra ◽  
H. Liu ◽  
Y. F. Xie

This study evaluated the feasibility of forward osmosis (FO) in diluting and reusing the concentrate produced in a reverse osmosis (RO) plant in James City County, VA. Secondary treated wastewater (STW) was used as the feed solution. Findings indicated that pH had slight effects on the water flux of the FO membrane. As the concentration of total dissolved solids (TDS) in the concentrate was diluted from 12.5 to 1.0 g/L or the temperature in the STW decreased from 23 to 10 °C, the membrane flux decreased from 2.2 to 0.59 and 0.81 L/(m2 h), respectively. The FO membrane showed a good performance in the rejection of organic pollutants, with only a small part of the protein-like substances and disinfection byproducts permeating to the diluted concentrate. During an 89-hour continuous operation, water flux decline due to membrane fouling was not observed. Controlling the TDS in the second-stage FO effluent at 1.5 g/L, approximately 8.3% of the pump energy input could be saved. The consumption of groundwater was reduced from 22.7 × 103 to 10.6 × 103 m3/d. FO was proved to be an effective method in both diluting the discharged concentrate and reducing the energy consumption of RO.


Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 78
Author(s):  
Bin Liu ◽  
Meng Wang ◽  
Kaihan Yang ◽  
Guangchao Li ◽  
Zhou Shi

In order to alleviate membrane fouling and improve removal efficiency, a series of pretreatment technologies were applied to the ultrafiltration process. In this study, ClO2 was used as a pre-oxidation strategy for the ultrafiltration (UF) process. Humic acid (HA), sodium alginate (SA), and bovine serum albumin (BSA) were used as three typical organic model foulants, and the mixture of the three substances was used as a representation of simulated natural water. The dosages of ClO2 were 0.5, 1, 2, 4, and 8 mg/L, with 90 min pre-oxidation. The results showed that ClO2 pre-oxidation at low doses (1–2 mg/L) could alleviate the membrane flux decline caused by humus, polysaccharides, and simulated natural water, but had a limited alleviating effect on the irreversible resistance of the membrane. The interfacial free energy analysis showed that the interaction force between the membrane and the simulated natural water was also repulsive after the pre-oxidation, indicating that ClO2 pre-oxidation was an effective way to alleviate cake layer fouling by reducing the interaction between the foulant and the membrane. In addition, ClO2 oxidation activated the hidden functional groups in the raw water, resulting in an increase in the fluorescence value of humic analogs, but had a good removal effect on the fluorescence intensity of BSA. Furthermore, the membrane fouling fitting model showed that ClO2, at a low dose (1 mg/L), could change the mechanism of membrane fouling induced by simulated natural water from standard blocking and cake layer blocking to critical blocking. Overall, ClO2 pre-oxidation was an efficient pretreatment strategy for UF membrane fouling alleviation, especially for the fouling control of HA and SA at low dosages.


2004 ◽  
Vol 50 (12) ◽  
pp. 279-285 ◽  
Author(s):  
J.H. Kweon ◽  
D.F. Lawler

The biggest impediment for applying membrane processes is fouling that comes from mass flux (such as particle and organic matter) to the membrane surface and its pores. Numerous research articles have indicated that either particles or natural organic matter (NOM) has been the most detrimental foulant. Therefore, the role of particles in membrane fouling was investigated with two synthetic waters (having either particles alone or particles with simple organic matter) and a natural water. Membrane fouling was evaluated with flux decline behavior and direct images from scanning electron microscopy. The results showed that the combined fouling by kaolin and dextran (a simple organic compound selected as a surrogate for NOM) showed no difference from the fouling with only the organic matter. The similarity might stem from the fact that dextran (i.e., polysaccharide) has no ability to be adsorbed on the clay material, so that the polysaccharide behaves the same with respect to the membrane with or without clay material being present. In contrast to kaolin, the natural particles showed a dramatic effect on membrane fouling.


2020 ◽  
Vol 988 ◽  
pp. 114-121 ◽  
Author(s):  
Mahmud ◽  
Muthia Elma ◽  
Erdina Lulu Atika Rampun ◽  
Aulia Rahma ◽  
Amalia Enggar Pratiwi ◽  
...  

Natural Organic Matter (NOM) content in peat water is a major problem of membrane fouling in ultrafiltration (UF). For that, two stages adsorption as pre-treatment was employed to minimize the membrane fouling of NOM content. This research was carried out to investigate the effect of two stages adsorption on ultrafiltration performance for NOM removal that remains in peat water. This method was using powdered activated carbon (PAC) dosage of 80, 160, 240, 320, 400, 480, 560, 640, 720, 800, 880 dan 960 mg.L-1. Then, Polysulfone (Psf) material was employed for Ultra filtration process. Membrane was applied in a dead-end mode with various operating pressure (1; 1.5; 2; 2.5; 3 bar). As a results, the optimum dose of PAC was 800 mg L-1 with dosage ratio of 3/4:1/4. Two stages adsorption-UF PSf provided the range from 86.9 to 92.8% of KMnO4 and 74.1-88.1% of UV254. For the experimental condition of 3 bar, the highest flux was achieved up to 39.919 L h-1.m-2.


2009 ◽  
Vol 43 (2) ◽  
pp. 389-394 ◽  
Author(s):  
Cheng-Fang Lin ◽  
Angela Yu-Chen Lin ◽  
Panchangam Sri Chandana ◽  
Chao-Yuan Tsai

2011 ◽  
Vol 64 (8) ◽  
pp. 1685-1691 ◽  
Author(s):  
T. Li ◽  
B. Z. Dong ◽  
Z. Liu ◽  
W. H. Chu

Algogenic organic matter (AOM) was extracted from blue-green algae (cyanobacteria) and its characteristic was determined by various methods including high-pressure size-exclusion chromatography (HP-SEC), hydrophobic and hydrophilic fractionation, molecular weight (MW) fractionation and fluorescence excitation emission matrix (EEM). The results revealed that AOM was hydrophilic fractionation predominantly, accounting for 78%. The specific ultraviolet absorbance of AOM was 1.1 L/(mg m) only. The analysis for MW distribution demonstrated that organic matter greater than 30,000 MW accounted for over 40% and was composed of mostly neutral hydrophilic compound. EEM analyses revealed that protein-like and humic-substances existed in AOM. A test for membrane filtration exhibited that AOM could make ultrafiltration membrane substantial flux decline, which can be attributed to membrane pore clog caused by neutral hydrophilic compound with larger MW.


2002 ◽  
Vol 2 (2) ◽  
pp. 177-183
Author(s):  
K. Kimura ◽  
Y. Watanabe

We have developed a novel biofilm-membrane reactor (BMR) in which a nitrifying biofilm is fixed on the surface of a rotating membrane disk. With this reactor, both strict solid-liquid separation and oxidation of ammonia nitrogen can be simultaneously performed. Based on the results obtained in previous bench-scale experiments, a pilot-scale study was conducted using river water at a water purification plant. The results obtained in the pilot study can be summarized as follows. (1) By implementation of pre-treatment (coagulation and sedimentation) and simple membrane cleaning (sponge cleaning), the filter run could be continued for 17 months without any chemical washing. (2) Sufficient nitrification was observed when water temperature was high. Deterioration in nitrification efficiency during winter was reduced by the addition of phosphorus. (3) In addition to nitrification, biological oxidation of AOC and manganese can be expected with the BMR. In this study, both AOC and manganese concentration in the permeate decreased to a level less than 10 μg/L. (4) Irreversible membrane fouling, which was thought to be mainly caused by manganese, became significant as the operation period became longer.


2006 ◽  
Vol 6 (2) ◽  
pp. 25-30 ◽  
Author(s):  
M. Koh ◽  
M.M. Clark ◽  
K.P. Ishida

Rejection by membrane adsorption has been observed and widely reported. However, little is known about whether membranes possess an adsorption capacity. Experimental data showed that when a hydrophobic polypropylene (PP) microfilter was used to filter a large volume of particle-free surface water containing dissolved natural organic matter (NOM), later batches of microfiltration (MF) permeate caused more flux decline to a fresh 20K-Dalton polyethersulfone (PES) ultrafilter. This suggests that membranes can have an adsorption capacity for foulants. In this research, the gradual increase in absorbance of ultraviolet (UV) light by subsequent batches of MF permeate was observed, and supports the findings from previous studies, that only a small fraction of NOM causes membrane fouling. Attenuated total reflectance Fourier transform infrared spectrometry and energy dispersive spectroscopy of fouled PP and PES membranes suggests foulants containing amide, aromatic, ether, hydroxyl and silicate functional groups. Silicates appear to participate in membrane fouling, and its removal with the small fraction of fouling NOM can reduce the fouling potential of water. These data improve our understanding of membrane fouling by natural waters, and have implications for the design of membrane plants that filter natural waters.


Sign in / Sign up

Export Citation Format

Share Document