Photodegradation of microcystin-LR catalyzed by metal phthalocyanines immobilized on TiO2-SiO2 under visible-light irradiation

2015 ◽  
Vol 72 (10) ◽  
pp. 1824-1831 ◽  
Author(s):  
Guotao Peng ◽  
Zhengqiu Fan ◽  
Xiangrong Wang ◽  
Xin Sui ◽  
Chen Chen

Microcystins (MCs) are a group of monocyclic heptapeptide toxins produced by species of cyanobacteria. Since MCs exhibit acute and chronic effects on humans and wildlife by damaging the liver, they are of increasing concern worldwide. In this study, we investigated the ability of the phthalocyanine compound (ZnPc-TiO2-SiO2) to degrade microcystin-LR (MC-LR) in the presence of visible light. X-ray diffraction (XRD) and UV-Visible diffuse reflectance spectra (UV-Vis DRS) were utilized to characterize the crystalline phase and the absorption behavior of this catalyst. According to the results, XRD spectra of ZnPc-TiO2-SiO2 powders taken in the 2θ configuration exhibited the peaks characteristic of the anatase phase. UV-Vis DRS showed that the absorption band wavelength shifted to the visible range when ZnPc was supported on the surface of TiO2-SiO2. Subsequently, several parameters including catalyst dose, MC-LR concentrations and pH were investigated. The MC-LR was quantified in each sample through high-performance liquid chromatography (HPLC). The maximum MC-LR degradation rate of 80.2% can be obtained within 300 minutes under the following conditions: catalyst dose of 7.50 g/L, initial MC-LR concentration of 17.35 mg/L, pH 6.76 and the first cycling run of the photocatalytic reaction. Moreover, the degradation process fitted well with the pseudo-first-order kinetic model.

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 899
Author(s):  
Yunhan Jin ◽  
Zhe Xing ◽  
Yinhui Li ◽  
Jian Han ◽  
Heike Lorenz ◽  
...  

Constructing heterojunction has attracted widespread concerns in photocatalysis research. BiOBr/Bi2S3/CdS composite material with a sea urchin shape was directly obtained by first synthesizing BiOBr microspheres. The morphology, structure and composition of the composite material were characterized by XRD, EDX, SEM and XPS. Dye degradation experiments showed that 83.3% of methylene blue removal was achieved after 2 h of visible light irradiation. The reaction rate under optimal conditions was 0.014 min−1 and the photocatalytic degradation process follows a pseudo-first-order kinetic model. Based on the EPR test results, the main active species involved in the reaction were •O2− and h+. The conduction band and valence band edge potential calculations confirmed the key role of CdS in the production of •O2−.


Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 60 ◽  
Author(s):  
Anastassiya A. Mashentseva ◽  
Murat Barsbay ◽  
Nurgulim A. Aimanova ◽  
Maxim V. Zdorovets

In this study, the use of composite track-etched membranes (TeMs) based on polyethylene terephthalate (PET) and electrolessly deposited silver microtubes (MTs) for the decomposition of toxic phenothiazine cationic dye, methylene blue (MB), under visible light was investigated. The structure and composition of the composite membranes were elucidated by scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction technique. Under visible light irradiation, composite membrane with embedded silver MTs (Ag/PET) displayed high photocatalytic efficiency. The effects of various parameters such as initial dye concentration, temperature, and sample exposure time on the photocatalytic degradation process were studied. The decomposition reaction of MB was found to follow the Langmuir–Hinshelwood mechanism and a pseudo-first-order kinetic model. The degradation kinetics of MB accelerated with increasing temperature and activation energy, Ea, was calculated to be 20.6 kJ/mol. The reusability of the catalyst was also investigated for 11 consecutive runs without any activation and regeneration procedures. The Ag/PET composite performed at high degradation efficiency of over 68% after 11 consecutive uses.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Prasanna Kumarathilaka ◽  
Vimukthi Jayaweera ◽  
Hasintha Wijesekara ◽  
I. R. M. Kottegoda ◽  
S. R. D. Rosa ◽  
...  

Embedding nanoparticles into an inert material like graphene is a viable option since hybrid materials are more capable than those based on pure nanoparticulates for the removal of toxic pollutants. This study reports for the first time on Cr(VI) removal capacity of novel starch stabilized nanozero valent iron-graphene composite (NZVI-Gn) under different pHs, contact time, and initial concentrations. Starch coated NZVI-Gn composite was developed through borohydrate reduction method. The structure and surface of the composite were characterized by scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), and point of zero charge (pHpzc). The surface area and pHpzc of NZVI-Gn composite were reported as 525 m2 g−1 and 8.5, respectively. Highest Cr(VI) removal was achieved at pH 3, whereas 67.3% was removed within first few minutes and reached its equilibrium within 20 min obeying pseudo-second-order kinetic model, suggesting chemisorption as the rate limiting process. The partitioning of Cr(VI) at equilibrium is perfectly matched with Langmuir isotherm and maximum adsorption capacity of the NZVI-Gn composite is 143.28 mg g−1. Overall, these findings indicated that NZVI-Gn composite could be utilized as an efficient and magnetically separable adsorbent for removal of Cr(VI).


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 626 ◽  
Author(s):  
Salah ◽  
Gaber ◽  
Kandil

The sorption of uranium and thorium from their aqueous solutions by using 8-hydroxyquinoline modified Na-bentonite (HQ-bentonite) was investigated by the batch technique. Na-bentonite and HQ-bentonite were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared (FTIR) spectroscopy. Factors that influence the sorption of uranium and thorium onto HQ-bentonite such as solution pH, contact time, initial metal ions concentration, HQ-bentonite mass, and temperature were tested. Sorption experiments were expressed by Freundlich and Langmuir isotherms and the sorption results demonstrated that the sorption of uranium and thorium onto HQ-bentonite correlated better with the Langmuir isotherm than the Freundlich isotherm. Kinetics studies showed that the sorption followed the pseudo-second-order kinetic model. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° indicated that the sorption of uranium and thorium onto HQ-bentonite was endothermic, feasible, spontaneous, and physical in nature. The maximum adsorption capacities of HQ-bentonite were calculated from the Langmuir isotherm at 303 K and were found to be 63.90 and 65.44 for U(VI) and Th(IV) metal ions, respectively.


2017 ◽  
Vol 18 (4) ◽  
pp. 1406-1419
Author(s):  
F. Elmi ◽  
R. Chenarian Nakhaei ◽  
H. Alinezhad

Abstract This study is the first report of its type demonstrating the synthesis of mHAP on the basis of magnetic functionalization with nHAP, which were synthesized using Rutilus frisii kutum fish scale as a benign fishery waste by-product. The mHAP was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray diffraction (EDX), and Fourier transform infrared (FT-IR) spectroscopic techniques. The XRD pattern confirmed the formation of a single-phase nHAP without any extra steady phases. It was also found that the pseudo-second-order kinetic model gave a satisfactory fit to the experimental data (R2 = 0.99). The maximum removal percentages of Cu and Zn ions in optimal conditions (adsorbent dosage at 0.1 g, 30 min contact time at 25 ± 1 °C and pH = 5 ± 0.1) by mHAP were 97.1% and 93.8%, respectively. Results also demonstrated that mHAP could be recycled for up to five cycles in the case of copper and zinc. The Langmuir isotherm was proved to have a better correlation compared with that of the Freundlich isotherm. The thermodynamic parameters indicated that it was a spontaneously endothermic reaction. In conclusion, mHAP could be regarded as a powerful candidate for efficient biosorbent, capable of adsorbing heavy metals from aqueous solutions.


2018 ◽  
Vol 5 (3) ◽  
pp. 171927 ◽  
Author(s):  
Yong Fu ◽  
Yue Huang ◽  
Jianshe Hu

A novel functional hybrid mesoporous composite material (CMP) based on chitosan and MCM-41-PAA was reported and its application as an excellent adsorbent for Hg(II) ions was also investigated. Innovatively, MCM-41-PAA was prepared by using diatomite and polyacrylic acid (PAA) with integrated polymer–silica hybrid frameworks, and then CMP was fabricated by introducing MCM-41-PAA to chitosan using glutaraldehyde as a cross-linking agent. The structure and morphology of CMP were characterized by X-ray diffraction, Fourier transform infrared spectra, thermogravimetric analysis, scanning electron microscopy and Brunauer–Emmett–Teller measurements. The results showed that the CMP possessed multifunctional groups such as –OH, –COOH and –NH 2 with large specific surface area. Adsorption behaviour of Hg(II) ions onto CMP was fitted better by the pseudo-second-order kinetic model and the Langmuir model when the initial Hg(II) concentration, pH, adsorption temperature and time were 200 mg l −1 , 4, 298 K and 120 min, respectively, as the optimum conditions. The corresponding maximum adsorption capacity could reach 164 mg g −1 . According to the thermodynamic parameters determined such as free energy, enthalpy and entropy, the adsorption process of Hg(II) ions was spontaneous endothermic adsorption.


Author(s):  
Yan Sun ◽  
Xiaojun Song ◽  
Jing Ma ◽  
Haochen Yu ◽  
Gangjun Liu ◽  
...  

The polyacrylonitrile/fly ash composite was synthesized through solution polymerization and was modified with NH2OH·HCl. The amidoxime-modified polyacrylonitrile/fly ash composite demonstrated excellent adsorption capacity for Zn2+ in an aqueous medium. Fourier transform-Infrared spectroscopy, thermogravimetric analysis, nitrogen adsorption, X-ray diffraction, and scanning electron microscopy were used to characterize the prepared materials. The results showed that the resulting amidoxime-modified polyacrylonitrile/fly ash composite was able to effectively remove Zn2+ at pH 4–6. Adsorption of Zn2+ was hindered by the coexisting cations. The adsorption kinetics of Zn2+ by Zn2+ followed the pseudo-second order kinetic model. The adsorption process also satisfactorily fit the Langmuir model, and the adsorption process was mainly single layer. The Gibbs free energy ΔG0, ΔH0, and ΔS0 were negative, indicating the adsorption was a spontaneous, exothermic, and high degree of order in solution system.


Author(s):  
Samira Taherkhani ◽  
Ali Khani

Introduction: In this study, nanosized zero-valent zinc (Zn0) as a reducing agent, simultaneously synthesized and immobilized on an oxidizing agent, ZnO photocatalyst for degradation of methyl orange (MO) from the aqueous solution. Materials and Methods: The prepared redox nanocomposite (nZn0-ZnO) was characterized by the XRD and SEM techniques. The prepared sample was separated by centrifuging. The preparation process of nZn0-ZnO including synthesis-immobilization, washing, and drying carried out under Argon gas flow. Moreover, the effect of temperature and kinetics reaction was studied. Results: The results showed that degradation efficiency of prepared redox nanocomposite was increased compared to each ZnO nanopowder and Zn0 under the same operational condition. The calculated activation energy for the degradation process was 4.05 KJ.mol-1. Finally, the results showed that the degradation processes followed pseudo first order kinetic model in the basic condition by the relative deviation modulus. Conclusion: As compared to ZnO nanopowder and Zn0, the prepared redox nanocomposite showed high degradation efficiency for the removal of methyl orange from the aqueous solution.


2020 ◽  
Vol 8 (4) ◽  
pp. 1258-1267

The objective of this work was the physicochemical characterization of a Moroccan natural clay from the Jorf Arfoud region (Lampert Coodinates: x = 595610, y = 101578) and its valorization in the elimination of organic pollutants (methyl orange MO and methylene blue MB) from aqueous solutions, with the adsorption technique on raw and calcined clay at 500°C. The clay was characterized by chemical analysis such as X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning electron microscopy (SEM). Crude and purified clays, consisting essentially of silica and alumina, are a characteristic property of phyllosilicates and also contain amounts of quartz, kaolinite and calcite as associated minerals. The experiments were performed after optimization of the parameters influencing the system, such as pH, adsorbent mass, initial dye concentration and temperature. The clays used absorb better the MB than MO, for an initial concentration of 10 mg/L and 20 mg/L respectively. Langmuir and Freundlich models of adsorption isotherms were applied to fit experimental equilibrium data. Results have showed that the adsorption of MB and MO followed very well the second order kinetic model on raw clay. The adsorption process was found to be exothermic in the case of MB. However, the adsorption of MO was endothermic.


Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 662
Author(s):  
Enjie Diao ◽  
Kun Ma ◽  
Hui Zhang ◽  
Peng Xie ◽  
Shiquan Qian ◽  
...  

The thermal stability and degradation kinetics of patulin (PAT, 10 μmol/L) in pH 3.5 of phosphoric-citric acid buffer solutions in the absence and presence of cysteine (CYS, 30 μmol/L) were investigated at temperatures ranging from 90 to 150 °C. The zero-, first-, and second-order models and the Weibull model were used to fit the degradation process of patulin. Both the first-order kinetic model and Weibull model better described the degradation of patulin in the presence of cysteine while it was complexed to simulate them in the absence of cysteine with various models at different temperatures based on the correlation coefficients (R2 > 0.90). At the same reaction time, cysteine and temperature significantly affected the degradation efficiency of patulin in highly acidic conditions (p < 0.01). The rate constants (kT) for patulin degradation with cysteine (0.0036–0.3200 μg/L·min) were far more than those of treatments without cysteine (0.0012–0.1614 μg/L·min), and the activation energy (Ea = 43.89 kJ/mol) was far less than that of treatment without cysteine (61.74 kJ/mol). Increasing temperature could obviously improve the degradation efficiency of patulin, regardless of the presence of cysteine. Thus, both cysteine and high temperature decreased the stability of patulin in highly acidic conditions and improved its degradation efficiency, which could be applied to guide the detoxification of patulin by cysteine in the juice processing industry.


Sign in / Sign up

Export Citation Format

Share Document