Bioremediation of synthetic fatliquors under microaerobic condition

2016 ◽  
Vol 75 (5) ◽  
pp. 1118-1127 ◽  
Author(s):  
B. Umamaheswari ◽  
K. Priya ◽  
Rama Rajaram

Synthetic fatliquors are useful as a fatliquoring agent, flotation agent and emulsifying agent in a wide range of industrial applications such as leather, pharmacy and farm chemicals. These fatliquors remain recalcitrant to natural biota in existing treatment plants. In the present study, the isolated microaerophilic Serratia sp. HA1 strain CSMB3 is capable of utilizing structurally different fatliquors as the sole substrate for their growth under microaerobic conditions. Degradation of vegetable fatliquors was observed from 95 to 97% in terms of lipids, with the production of lipase at 72 h. Degradation of synthetic fatliquors was observed in terms of chemical oxygen demand from 85% to a minimum of 25%. It is in the order of sulfited/sulfated fatliquors > sulfochlorinated fatliquors > chlorinated fatliquors. A thin layer chromatography chromatogram confirmed the degradation of non polar fatliquor to polar compounds. Production of the red pigment prodigiosin in synthetic fatliquors enhanced the growth of the isolate. Fourier transform infrared spectroscopy (FTIR) confirmed the bioremediation of sulfochlorinated fatliquor into lipids and fatty acids and gas chromatography–mass spectrometry (GC-MS) results confirmed that alcohols and esters are the final end products. Thus the isolated strain CSMB3 may be used in the treatment of wastewaters containing vegetable and synthetic fatliquors.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Nicole Lapeyrouse ◽  
Muqiong Liu ◽  
Shengli Zou ◽  
Greg Booth ◽  
Cherie L. Yestrebsky

Chlorinated alkanes were heavily used in a wide range of industrial applications including as degreasers, paint strippers, chemical intermediates, and soil fumigants. These compounds are an environmental concern due to the adverse health effects associated with them and have been detected in environmental matrices including soils and groundwater. Chlorinated alkanes are recalcitrant, and current remediation methods that employ zero-valent iron (ZVI) are unable to directly dehalogenate these compounds, limiting the available approaches for in situ remediation of these widely utilized chemicals. This study employed a novel approach for the remediation of 1,2,3-trichloropropane (TCP), 1,2-dichloropropane (1,2-DCP), 1,3-dichloropropane (1,3-DCP), 1-chloropropane (1-CP), and 1,2-dichloroethane (1,2-DCA) in the presence of ZVI and vitamin B12, a naturally occurring electron mediator. Batch reactions were performed in order to determine a kinetic model for the associated degradation mechanisms. Dechlorination byproducts were confirmed through gas chromatography-mass spectrometry (GC-MS) coupled to a purge and trap. Free chloride was quantified by ion chromatography (IC) utilizing suppressed conductivity detection. In the absence of vitamin B12, reductive dechlorination of chlorinated alkanes was observed to not occur when exposed to only reactive ZVI particles (<5 μm). However, in the presence of ZVI combined with vitamin B12, complete reductive dechlorination was observed and followed a pseudo-first-order reaction.


Author(s):  
Mariia Shanaida ◽  
Izabela Jasicka-Misiak ◽  
Marietta Bialon ◽  
Olha Korablova ◽  
Piotr P. Wieczorek

Two different methods of chromatographic analysis have been used in this study for the phytochemical evaluation of main secondary metabolites in the aerial part of bee balm (Monarda fistulosa L.) as the non-officinal medicinal plant of the Lamiaceae Martinov family. The high performance thin layer chromatography (HPTLC) fingerprinting method was developed for the qualitative analyses of phenolic and non-polar compounds in the bee balm herb after its maceration in the solvents of different polarity. Such polyphenols as rosmarinic, caffeic and chlorogenic acids were authentically identified in the methanol extract of herb using HPTLC. Aromatic monoterpenoid thymol was identified by the HPTLC method in the extracts obtained with non-polar solvents (toluene, methylene chloride, and chloroform). 38 volatile compounds were determined in the methylene chloride extract of M. fistulosa herb by gas chromatography mass spectrometry (GC/MS); it was taken into account only components with the content more than 0.2 %. The GC/MS analysis showed that thymol (23.73 %), followed by carvacrol (10.09 %), p-cymene (9.74 %), and thymoquinone (8.52 %) were the major constituent of methylene chloride extract. Used chromatographic techniques may be recommended for the reliable phytochemical authentication of the M. fistulosa herb.


2015 ◽  
Vol 69 (1) ◽  
Author(s):  
Aniko Bertokova ◽  
Tomas Bertok ◽  
Jaroslav Filip ◽  
Jan Tkac

AbstractGluconobacter oxydans bacteria exhibit a unique metabolism for quick and incomplete oxidation of a wide range of different compounds (aldoses, ketoses, mono- and poly-alcohols, etc.). Such biotransformation efficiency with simple biomass production led to the industrial applications of these bacteria in the production of several important commodities. Their respiratory activity can also be successfully studied and used in the field of bioelectrochemistry. The main aim of this review is to present various strategies to improve selectivity of assays using intact/treated cells of G. oxydans, to introduce the application of G. oxydans-based biosensors in selective monitoring of analytes during biotransformation processes and to provide information about utilizable sugars in fermentation media or in biological oxygen demand value determination. The final part of the review describes potential application of G. oxydans cells in the generation of electricity from complex fuels within microbial fuel cells by advanced direct electron transfer route between bacterial cells and electrodes.


2020 ◽  
Vol 11 (4) ◽  
pp. 11077-11087

Ferula gummosa (Apiaceae) Boiss. as a valuable herbal medicine possesses various medical and industrial applications. The oleo-gum resin of F. gummosa, called Galbanum, holds several biological activities for its numerous terpenoid compounds. This study has been conducted on quality control of the F. gummosa oleo-gum resin prepared from standard plants, and commercial samples belong to different parts of Iran. For this purpose, essential oil and dichloromethane extracts and standard fruit essential oil were obtained and evaluated by Gas Chromatography/Mass Spectrometry (GC/MS). Moreover, all dichloromethane oleo-gum resin samples (Standards and commercials) were qualitatively analyzed by High-Performance Thin-Layer Chromatography (HPTLC). Based on the GC/MS analysis, β-Pinene, δ-3-Carene and, α-Pinene in standard and β-Pinene, α-Pinene and, δ-3-Carene in essential oil, commercial samples were recognized as major compounds, respectively. The GC/MS analysis indicates that all commercial oleo-gum resin samples may obtain from the rhizome except one of them. The HPTLC analysis also revealed that the same spot pattern in all samples might be related to the major resin constituents. However, the source of oleo-gum resin could not be clarifying. Based on the results, both GC/FID and HPTLC analysis are useful methods for quality control of oleo-gum resin. The plant part used for oleo-resin extraction can be recognized via the percentage of essential compounds in it.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mohd Mazhar ◽  
S S Agrawal

Berberis aristata DC and Nigella sativa L. are officially listed in various Indian Pharmacopoeia and AYUSH official documents. Prescribed for different ailments for proven medicinal activities, they thus became part of polyherbal medications. With reverse pharmacology and scientific validation, more than 30 patents are filed on different formulations of B. aristata and granted. Nigella sativa L. has been broadly studied for its therapeutic potential and wide range of activities against cardiovascular, diabetic, cancer, and life style disorders. Thus, this study is aimed at standardizing B. aristata and N. sativa and their antineoplasia activity in 7, 12-dimethylbenz[a]anthracene (DMBA)-induced mouse models. Molecular docking was done using the Schrodinger program Maestro 9.0. Herbal extracts and essential oil (B. aristata and N. sativa) were standardized and quantified using high-performance thin-layer chromatography (HPTLC) (CAMAG) and gas chromatography–mass spectrometry (GCMS) (Agilent 2010GC System) with validated methods. DMBA was administered orally once a week (1mg/200 µL) to each animal except the normal control. Hematology, histopathology, and immunoassays were performed, and data were analyzed and depicted with GraphPad and SPSS. In molecular docking, thymoquinone showed the highest docking score (9.519, 9.211, and 9.042, respectively) in the active site pockets of IL6 (PDB ID: 4CNI and 5FCU), TNF (PDB ID: 2AZ5), and VEGF (PDB ID: 4KZN). Out of all four target sites, thymoquinone and berberine showed good binding affinity with IL6 (PDB ID: 4CNI) compared to α- and β-pinenes. HPTLC analysis of the hydroalcoholic extract showed the presence of berberine both qualitatively and quantitatively (5.4% berberine), and thymoquinone detected 0.17% in the N. sativa extract. GCMS for essential oil showed 26 compounds including ±pinene. Leukocytes and erythrocytes of N. sativa and B. aristata were analyzed, and significant improvements were recorded (P &lt; 0.05) and graphically presented. Mean survival time was calculated by the Kaplan Meier method (119 days). Immunoassay analyses were conducted, namely, TNF-α and VEGF, and interpreted and marked.


2020 ◽  
Author(s):  
Jorge Alberto Mendoza Pérez ◽  
Abril Gardenia Martínez Castillo ◽  
Jorge Octaviano Gomez Castrejon ◽  
Juan Carlos Gómez Buendía

In this chapter, we report previous results about advances of an electrolysis process developed for breakdown of endocrine disrupting drugs in aqueous media. The objective is to achieve the breakdown of two drugs: trimethoprim and a mixture of clavulanic acid-amoxicillin (1:7) with an electrolytic cell by means of oxidization-reduction reactions. The evaluation of the process was carried out using spectrometry techniques UV-Vis, thin layer chromatography (TLC), chemical oxygen demand (COD), and total organic carbon (TOC). Handcrafted mineral carbon electrodes doped with titanium dioxide were designed, platinum and copper wires were placed, and a potassium hydroxide solution was used as electrolyte. The electrolyte, being an alkaline salt, allows the transport of charges from one side to the other, and electrode doped with titanium dioxide is used in order to help the electronic transfer, and the mineral carbon, having a strong affinity for organic and non-polar compounds, performs an adsorption process. Results from several performed assays showed that after 1 hour of treatment, it can be seen the breakdown of the drugs present in a synthetic wastewater solution.


2017 ◽  
Vol 14 (4) ◽  
pp. 1413-1428 ◽  
Author(s):  
K. Leela ◽  
C. Anchana Devi

ABSTRACT: Lichens are composite algae having a symbiotic association with a fungal partner. They produce numerous secondary metabolites, which play an important role in pharmaceutical and in other industrial applications. The Secondary metabolites produced by lichens are found to be 80% more when compared to that produced by other organisms. Not much work has been carried out on lichens due to the difficulty in their cultivation but still it emerges as a potential source in developing therapeutically important drugs which are widely beneficial in all fields of application. The Present study was aimed to isolate, purify and determine the applications of secondary metabolites from Lichen Parmelia perlata. The presence of these compounds were detected and purified by thin layer chromatography and column chromatography using specific solvent systems. The purified fractions were then identified by Gas chromatography-Mass spectrometry (GC-MS). The compounds were then subjected to application oriented studies such as antimicrobial activity, antioxidant activity and antidiabetic activity. Not much work have been carried out on the isolation of a specific glycoside and alkaloid compound from Lichen Parmelia perlata, so this study was an attempt to explore the applications of these individual compounds which could prove beneficial to the mankind for different purposes.


2015 ◽  
Vol 72 (2) ◽  
pp. 311-321 ◽  
Author(s):  
Vipul R. Patel ◽  
Nikhil Bhatt

The objective of this study was development and characterization of a halophilic bacterial consortium for rapid decolorization and degradation of a wide range of dyes and their mixtures. The 16S rRNA gene analysis of developed halophilic consortium VN.1 showed that the bacterial consortium contained six bacterial strains, which were identified as Pseudomonas fluorescens HM480360, Enterobacter aerogenes HM480361, Shewanella sp. HM589853, Arthrobacter nicotianae HM480363, Bacillus beijingensis HM480362 and Pseudomonas aeruginosa JQ659549. Halophilic consortium VN.1 was able to decolorize up to 2,500 mg/L RB220 with &gt;85% chemical oxygen demand (COD) reduction under static condition at 30 °C and pH 8.0 in the presence of 7% NaCl. VN.1 also exhibited more than 85% COD reduction with &gt;25 mg/(L h) rate of decolorization in the case of different reactive dye mixtures. We propose the symmetric cleavage of RB220 using Fourier transform infrared, high-performance liquid chromatography (HPLC), nuclear magnetic resonance and gas chromatography-mass spectrometry analysis, and confirmed the formation of sodium-4-aminobenzenesulfonate, sodium-6-aminonepthalenesulfonate, and sodiumbenzene/nepthalenesulfonate. Toxicity studies confirm that the biodegraded products of RB220 effluent stimulate the growth of plants as well as the bacterial community responsible for soil fertility.


1969 ◽  
Vol 61 (4) ◽  
pp. 641-648 ◽  
Author(s):  
Leon J. Sholiton ◽  
Emile E. Werk

ABSTRACT Rat and bovine brain have been incubated with testosterone-4-14C under standard conditions. With use of paper chromatography, the extracted metabolites were noted to fall into less-polar, iso-polar, and more polar fractions. The components of the less-polar fraction were separated by acetylation and thin-layer chromatography and the major end-products identified by recrystallization to constant specific activity or constant 3H/14C ratios. Androst-4-enedione and 5α-dihydrotestosterone were formed consistently under the conditions utilized. Trace amounts of other less-polar metabolites were noted occasionally.


2019 ◽  
Author(s):  
James Ewen ◽  
Carlos Ayestaran Latorre ◽  
Arash Khajeh ◽  
Joshua Moore ◽  
Joseph Remias ◽  
...  

<p>Phosphate esters have a wide range of industrial applications, for example in tribology where they are used as vapour phase lubricants and antiwear additives. To rationally design phosphate esters with improved tribological performance, an atomic-level understanding of their film formation mechanisms is required. One important aspect is the thermal decomposition of phosphate esters on steel surfaces, since this initiates film formation. In this study, ReaxFF molecular dynamics simulations are used to study the thermal decomposition of phosphate esters with different substituents on several ferrous surfaces. On Fe<sub>3</sub>O<sub>4</sub>(001) and α-Fe(110), chemisorption interactions between the phosphate esters and the surfaces occur even at room temperature, and the number of molecule-surface bonds increases as the temperature is increased from 300 to 1000 K. Conversely, on hydroxylated, amorphous Fe<sub>3</sub>O<sub>4</sub>, most of the molecules are physisorbed, even at high temperature. Thermal decomposition rates were much higher on Fe<sub>3</sub>O<sub>4</sub>(001) and particularly α-Fe(110) compared to hydroxylated, amorphous Fe<sub>3</sub>O<sub>4</sub>. This suggests that water passivates ferrous surfaces and inhibits phosphate ester chemisorption, decomposition, and ultimately film formation. On Fe<sub>3</sub>O<sub>4</sub>(001), thermal decomposition proceeds mainly through C-O cleavage (to form surface alkyl and aryl groups) and C-H cleavage (to form surface hydroxyls). The onset temperature for C-O cleavage on Fe<sub>3</sub>O<sub>4</sub>(001) increases in the order: tertiary alkyl < secondary alkyl < primary linear alkyl ≈ primary branched alkyl < aryl. This order is in agreement with experimental observations for the thermal stability of antiwear additives with similar substituents. The results highlight surface and substituent effects on the thermal decomposition of phosphate esters which should be helpful for the design of new molecules with improved performance.</p>


Sign in / Sign up

Export Citation Format

Share Document