scholarly journals Synthesis of nanoZrO2 via simple new green routes and its effective application as adsorbent in phosphate remediation of water with or without immobilization in Al-alginate beads

2020 ◽  
Vol 81 (12) ◽  
pp. 2617-2633
Author(s):  
Wondwosen Kebede Biftu ◽  
Kunta Ravindhranath

Abstract Nano particles of ZrO2 of average size 10.91 nm are successfully synthesized via green routes from a solvent blend of water and ethylene glycol (4:1 v/v). Bio-extract of seeds of Sapindus plant is employed as stabilizing and/or capping agent and homogeneous method of precipitation is adopted to generate the precipitating agent. The nZrO2 particles are immobilized in aluminum alginate beads (nZrO2-Al- alig). Nano-ZrO2 and beads are investigated as adsorbents for the extraction of phosphate from water. The controlling physicochemical parameters are studied for the maximum phosphate removal using simulate water. The optimum conditions are: pH: 7; sorbent dosage: 0.1 g/100 mL for nZrO2 and 0.08 g/100 mL for beads; equilibration time: 30 min.for nZrO2 and 35 min for beads; initial phosphate concentration: 50 mg/L; temperature: 30 ± 1 °C; 300 rpm. The adsorption capacities are: 126.2 mg/g for nZrO2 and 173.0 mg/g for ‘nZrO2-Al- alig’ and they are higher than many reported in literature. The beads, besides facilitating the easy filtration, are exhibiting enhanced cumulative phosphate-adsorption nature of nanoZrO2 and Al-alginate. X-ray diffraction (XRD), Fourier transform infrared (FTIR), field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray (EDX) investigations are employed in characterizing the adsorbents. Of the various isotherm models analyzed to assess the nature of adsorption, Freundlich model provides the best correlation (R2 = 0.99 for nZrO2 and R2 = 0.99 for ‘nZrO2-Al-alig’), indicating the heterogeneous and multi-layered adsorption process. Thermodynamic studies reveal the endothermic and spontaneous nature of sorption. Pseudo-second-order model of kinetics describes the adsorption well. Spent adsorbents can be regenerated with marginal loss of adsorption capacity until five cycles. The sorbents are successfully applied to remove phosphate from polluted lake water samples.

2018 ◽  
Vol 250 ◽  
pp. 06013 ◽  
Author(s):  
Nur Atikah Abdul Salim ◽  
Noorul Hudai Abdullah ◽  
Muhammad Rijaluddin Khairuddin ◽  
Mohd A’ben Zulkarnain Rudie Arman ◽  
Mohd Hairul Khamidun ◽  
...  

Excessive amount of phosphate released from wastewater can cause eutrophication to the receiving waters. Adsorption technique has been used to remove phosphate from aqueous solutions. The use of waste mussel shell (WMS) to remove phosphate from aqueous solutions and application of several kinetic and isotherm models to describe the adsorption of phosphate onto WMS were conducted in batch experiments. The phosphate adsorption by the WMS was examined with respect to solute concentration, contact time and adsorbent dose. The phosphate removal efficiencies obtained were 46.7, 57.6, 64.1, 70.8 and 75.2% at 144 h contact time for WMS dosage of 2, 4, 6, 8 and 10 g, respectively. Physical and chemical properties of WMS including surface physical morphology and elemental compositions were characterized. A comparison of kinetic models applied to the phosphate adsorption onto WMS was evaluated for the pseudo-first order and pseudo-second order model. The experimental data fitted very well with the pseudo-second order kinetic model (R2 > 0.984), which indicated the adsorption process was chemisorption. In the isotherm studies, the Langmuir and Freundlich isotherm models were applied. The results indicated that the use of Freundlich equation is well described with the phosphate adsorptions onto WMS (R2 = 0.968), suggesting the heterogeneity of the adsorbent surface. The experimental results suggested the use of WMS as an excellent adsorption material for phosphate removal from aqueous solutions, giving new insights into environmental engineering practices.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Olivea Abd Al-Azim Elhefnawy ◽  
Amira Abd ElFattah Elabd

Abstract AlBaNi-LDH nanoparticles have been synthesized by the co-precipitation method. A series of characterization analyses (Scanning Electron Microscope, Energy Dispersive X-ray, Transmission Electron Microscope, X-ray Diffraction, Atomic Force Microscope, and Infrared spectroscopy) proved that the surface structure of AlBaNi-LDH nano-particles was the key mechanism for UO2 2+ adsorption. The synthesized product showed good performance in UO2 2+ adsorption efficiency in neutral pH with a maximal adsorption capacity of 137 mg/g. The results demonstrated the adsorption process fitted well with pseudo-second-order and Langmuir isotherm models. Also, the effects of coexisting ions and different eluents are briefly described. These results confirm that AlBaNi-LDH is an effective material for the adsorption of UO2 2+ from an aqueous solution with reusable availability.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3427
Author(s):  
Rachid El Kaim Billah ◽  
Moonis Ali Khan ◽  
Young-Kwon Park ◽  
Amira AM ◽  
Hicham Majdoubi ◽  
...  

Chitosan (Cs)-based composites were developed by incorporating silica (Cs–Si), and both silica and hydroxyapatite (Cs–Si–Hap), comparatively tested to sequester hexavalent (Cr(VI)) ions from water. XRD and FT-IR data affirmed the formation of Cs–Si and Cs–Si–Hap composite. Morphological images exhibits homogeneous Cs–Si surface, decorated with SiO2 nanoparticles, while the Cs–Si–Hap surface was non-homogeneous with microstructures, having SiO2 and Hap nanoparticles. Thermal analysis data revealed excellent thermal stability of the developed composites. Significant influence of pH, adsorbent dose, contact time, temperature, and coexisting anions on Cr(VI) adsorption onto composites was observed. Maximum Cr(VI) uptakes on Cs and developed composites were observed at pH 3. The equilibration time for Cr(VI) adsorption on Cs–Si–Hap was 10 min, comparatively better than Cs and Cs–Si. The adsorption data was fitted to pseudo-second-order kinetic and Langmuir isotherm models with respective maximum monolayer adsorption capacities (qm) of 55.5, 64.4, and 212.8 mg/g for Cs, Cs–Si, and Cs–Si–Hap. Regeneration studies showed that composites could be used for three consecutive cycles without losing their adsorption potential.


2018 ◽  
Vol 2017 (2) ◽  
pp. 578-591 ◽  
Author(s):  
Lihong Peng ◽  
Hongliang Dai ◽  
Yifeng Wu ◽  
Zheqin Dai ◽  
Xiang Li ◽  
...  

Abstract A novel magnetic calcium silicate hydrate composite (Fe3O4@CSH) was proposed for phosphorus (P) removal and recovery from a synthetic phosphate solution, facilitated by a magnetic separation technique. The Fe3O4@CSH material was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), powder Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), zeta-potential and magnetic curves. The chemical composition and structure of Fe3O4@CSH and the successful surface loading of hydroxyl functional groups were confirmed. Phosphate adsorption kinetics, isotherm, and thermodynamic experiments showed that adsorption reaches equilibrium at 24 h, with a maximum adsorption capacity of 55.84 mg P/g under optimized experimental conditions. Adsorption kinetics fitted well to the pseudo second-order model, and equilibrium data fit the Freundlich isotherm model. Thermodynamic analysis provided a positive value for ΔH° (129.84 KJ/mol) and confirmed that phosphate adsorption on these materials is endothermic. The P-laden Fe3O4@CSH materials could be rapidly separated from aqueous solution by a magnetic separation technique within 1 min. A removal rate of more than 60% was still obtained after eight adsorption/desorption cycles, demonstrating the excellent reusability of the particles. The results demonstrated that the Fe3O4@CSH materials had high P-adsorption efficiency and were reusable.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Emmanuel Nyankson ◽  
Jonas Adjasoo ◽  
Johnson Kwame Efavi ◽  
Reuben Amedalor ◽  
Abu Yaya ◽  
...  

In this work, zeolite (Z) and Z-Fe3O4 nanocomposite (Z-Fe3O4 NC) have been synthesized. The Fe3O4 nanoparticles were synthesized using the extract from maize leaves and ferric and ferrous chloride salts and encapsulated into the zeolite framework. The nanocomposite (Z-Fe3O4 NC) was characterized using X-ray diffractometer (XRD), Fourier-transform infrared (FT-IR) spectroscopy, energy-dispersive X-ray (EDX) spectroscopy, and scanning electron microscopy (SEM). The potential of Z-Fe3O4 NC as an adsorbent for removing methylene blue molecules (MB) from solution was examined using UV-Vis and kinetic and equilibrium isotherm models. The adsorption data fitted best with the pseudo-second-order model and Weber and Morris model, indicating that the adsorption process was chemisorption, while the Weber and Morris described the rate-controlling steps. The intraparticle diffusion model suggests that the adsorption processes were pore and surface diffusion controlled. The Langmuir isotherm model best describes the adsorption process indicating homogeneous monolayer coverage of MB molecules onto the surface of the Z-Fe3O4 NC. The maximum Langmuir adsorption capacity was 2.57 mg/g at 25°C. The maximum adsorption efficiency was 97.5%. After regeneration, the maximum adsorption efficiency achieved at a pH of 7 was 82.6%.


2016 ◽  
Vol 6 (4) ◽  
pp. 544-552 ◽  
Author(s):  
H. Godini ◽  
F. Hashemi ◽  
L. Mansuri ◽  
M. Sardar ◽  
Ghasem Hassani ◽  
...  

The present paper aims to investigate water purification of phenol by walnut green hull adsorbent. The surface characteristics of the adsorbent were studied using Fourier transform infra-red (FTIR), scanning electron microscope, and X-ray diffraction (XRD) techniques. The presence of functional groups such as hydroxyl and carbonyl onto walnut green hull surface was proved by FTIR analysis. Also quartz, cellulose and hematite were detected in the XRD analysis of samples by an X-ray diffractometer. The maximum sorption was achieved at pH 4.0. Data were evaluated for compliance with the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The results indicate that the data for adsorption of phenol onto walnut green hull fitted well with the Langmuir isotherm. The maximum adsorption capacity of the adsorbent was achieved by Langmuir isotherm 17.8 mg g–1. Also, the adsorption kinetics of phenol on the adsorbent were studied. The rates of sorption were found to conform to pseudo-second-order kinetics with good correlation.


2020 ◽  
Vol 3 (1) ◽  
pp. 208-220
Author(s):  
Sara Jamaliniya ◽  
O. D. Basu ◽  
Saumya Suresh ◽  
Eustina Musvoto ◽  
Alexis Mackintosh

Abstract A renewable, green activated carbon made from sucrose (sugar) was compared with traditional bituminous coal-based granular activated carbon (GAC). Single and multi-component competitive adsorption of nitrate and phosphate from water was investigated. Langmuir and Freundlich isotherm models were fitted to data obtained from the nitrate and phosphate adsorption experiments. Nitrate adsorption fits closely to either Freundlich or Langmuir model for sucrose activated carbon (SAC) and GAC with a Langmuir adsorption capacity of 7.98 and 6.38 mg/g, respectively. However, phosphate adsorption on SAC and GAC demonstrated a selective fit with the Langmuir model with an adsorption capacity of 1.71 and 2.07 mg/g, respectively. Kinetic analysis demonstrated that adsorption of nitrate and phosphate follow pseudo-second-order kinetics with rate constant values of 0.061 and 0.063 g/(mg h), respectively. Competitive studies between nitrate and phosphate were demonstrated in preferential nitrate removal with GAC and preferential phosphate removal with SAC. Furthermore, nitrate and phosphate removals decreased from 75% removal to 35% removal when subject to multi-component solutions, which highlights the need for adsorption analysis in complex systems. Overall, SAC proved to be competitive with GAC in the removal of inorganic contaminants and may represent a green alternative to coal-based activated carbon.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3962
Author(s):  
Hanna Siwek ◽  
Krzysztof Pawelec

Wastewater is characterized by a high content of phosphate and toxic metals. Many studies have confirmed the sorption affinity of alginate adsorbents for these ions. In this study, the adsorption of phosphate from effluent of sewage sludge on biodegradable alginate matrices cross-linked with Fe3+ ions (Fe_Alg) was investigated. Kinetics and adsorption isotherms were tested in laboratory conditions in deionized water (DW_P) and in the effluent (SW_P), and in the same solutions enriched in toxic metals ions—Cu2+, Cd2+, Pb2+, and Zn2+ (DW_PM and SW_PM). Batch experiments were performed by changing the concentration of phosphate at constant metal concentration. Kinetics experiments indicated that the pseudo-second-order model displayed the best correlation with adsorption kinetics data for both metals and phosphate. The Freundlich equation provided the best fit with the experimental results of phosphate adsorption from DW_P and DW_PM, while the adsorption from SD_P and SD_PM was better described by the Langmuir equation. For tested systems, the affinity of the Fe_Alg for metal ions was in the following decreasing order: Pb2+ > Cu2+ > Cd2+ > Zn2+ in DW_PM, and Pb2+ > Cu2+ > Cd2+ > Zn2+ in SW_PM. The metals’ enrichment of the DW_P solution increased the affinity of Fe_Alg beads relating to phosphate, while the addition of the metals of the SW_P solution decreased this affinity.


2019 ◽  
Author(s):  
Chem Int

The objective of this study is to evaluate the performance and capacities of the bentonite of Maghnia, modified with benzyldimethyltetradecylammonium chloride, to remove the organic pollutant 2,4,6-Trichlorophenol (TCP). The modified sample was studied by X-ray diffraction (XRD) technique, infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) methods. The best removal rate (99.52%) was obtained at 19°C, pH 4, solution concentration of 50 mg/L, stirring speed of 180 rpm and contact time of 60 min. The results were well fitted by both Langmuir and Freundlich isotherm models and the pseudo-second-order is the best model to describe the process.


2020 ◽  
Author(s):  
Neza Rahayu Palapa ◽  
Tarmizi Taher ◽  
Risfidian Mohadi ◽  
Addy Rachmat ◽  
Aldes Lesbani

Abstract In this work, CuAl/Biochar (BC) composite was prepared by the coprecipitation method. The materials were applied to remove malachite green in aqueous solution. These materials were characterized using XRD, FTIR, BET and SEM-EDX analyses. The composite material was confirmed by X-ray diffractograms with reflection (002) at 24o and the appearance of new peaks at 1095 cm -1 . The BET result of CuAl/BC composite has larger surface area is 168 m 2 /g than 46 m 2 /g for LDH. The morphologies of composite materials show agglomeration and micro particle size. The result of the adsorption study indicated the composite material follows pseudo-second-order (PSO) and Langmuir isotherm models. The maximum adsorption capacity of malachite green using CuAl/BC uptake is 164.316 mg/g. The thermodynamic analysis indicates that the malachite green adsorption is spontaneous, endothermic. Regeneration study of adsorbent CuAl/BC composite shows after four times reused, it still has high removal efficiency at 89%.


Sign in / Sign up

Export Citation Format

Share Document