scholarly journals Dynamic and equilibrium precipitation of struvite from the concentrated cellulosic ethanol stillage

Author(s):  
Qiqi Zhang ◽  
Tobias Hogen ◽  
Kuangxin Zhou ◽  
Stefan Berendts ◽  
Kang Hu ◽  
...  

Abstract The phosphate rock mineral is the main source of P-fertilizer production. It is estimated to become depleted in next century. Thus, the recovery of phosphorus from waste streams have attracted great interest. The cellulosic ethanol production is seen more and more important in future. During the production of cellulosic ethanol, the phosphorus element is released from lignocellulosic biomasses and end up dissolved as phosphate ions in the stillage stream. In this study, the struvite (MgNH4PO4 · 6 H2O) recovery from the concentrated cellulosic ethanol stillage (ES) was conducted under room conditions with an initial pH at 7–9. The effect of Mg2+, PO43−, NH4+ and Ca2+ during struvite precipitation testes are investigated. The optimized pH value for struvite recovery is estimated at 8.5, by which 85% of PO43− and 46% of Mg2+ are removed from the liquid stream. The mass fraction of struvite in recovered crystal sample reaches 82 wt.%. The economic evaluation of struvite recovery from ES was also investigated. This work proves that the struvite is potentially to be recovered with high purity from the concentrated cellulosic ethanol stillage.

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1645 ◽  
Author(s):  
Jianhua Xiong ◽  
Yinna Liang ◽  
Hao Cheng ◽  
Shuocheng Guo ◽  
Chunlin Jiao ◽  
...  

Intimate coupling of photocatalysis and biodegradation (ICPB) has shown promise in removing unwanted organic compounds from water. In this study, bagasse cellulose titanium dioxide composite carrier (SBC-TiO2) was prepared by low-temperature foaming methods. The optimum preparation conditions, material characterization and photocatalytic performance of the composite carrier were then explored. By conducting a single factor test, we found that bagasse cellulose with a mass fraction of 4%, a polyvinyl alcohol solution (PVA) with a mass fraction of 5% and 20 g of a pore-forming agent were optimum conditions for the composite carrier. Under these conditions, good wet density, porosity, water absorption and retention could be realized. Scanning electron microscopy (SEM) results showed that the composite carrier exhibited good biologic adhesion. X-ray spectroscopy (EDS) results confirmed the successful incorporation of nano-TiO2 dioxide into the composite carrier. When the mass concentration of methylene blue (MB) was 10 mg L−1 at 200 mL, 2 g of the composite carrier was added and the initial pH value of the reaction was maintained at 6, the catalytic effect was best under these conditions and the degradation rate reached 78.91% after 6 h. The method of preparing the composite carrier can aid in the degradation of hard-to-degrade organic compounds via ICPB. These results provide a solid platform for technical research and development in the field of wastewater treatment.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 529
Author(s):  
Hongjuan Zheng ◽  
Kongjun Zhu ◽  
Ayumu Onda ◽  
Kazumichi Yanagisawa

Eu(OH)3 with various shape-controlled morphologies and size, such as plate, rod, tube, prism and nanoparticles was successfully synthesized through simple hydrothermal reactions. The products were characterized by XRD (X-Ray Powder Diffraction), FE-SEM (Field Emission- Scanning Electron Microscopy) and TG (Thermogravimetry). The influence of the initial pH value of the starting solution and reaction temperature on the crystalline phase and morphology of the hydrothermal products was investigated. A possible formation process to control morphologies and size of europium products by changing the hydrothermal temperature and initial pH value of the starting solution was proposed.


2014 ◽  
Vol 79 (7) ◽  
pp. 815-828 ◽  
Author(s):  
Nikola Ilic ◽  
Slavica Lazarevic ◽  
Vladana Rajakovic-Ognjanovic ◽  
Ljubinka Rajakovic ◽  
Djordje Janackovic ◽  
...  

The sorption of inorganic arsenic species, As(III) and As(V), from water by sepiolite modified with hydrated iron(III) oxide was investigated at 25 ?C through batch studies. The influence of the initial pH value, the initial As concentrations, the contact time and types of water on the sorption capacity was investigated. Two types of water were used, deionized and groundwater. The maximal sorption capacity for As(III) from deionized water was observed at initial and final pH value 7.0, while the bonding of As(V) was observed to be almost pH independent for pH value in the range from 2.0 to 7.0, and the significant decrease in the sorption capacity was observed at pH values above 7.0. The sorption capacity at initial pH 7.0 was about 10 mg g?1 for As(III) and 4.2 mg g?1 for As(V) in deionized water. The capacity in groundwater was decreased by 40 % for As(III) and by 20 % for As(V). The Langmuir model and pseudo-second order kinetic model revealed good agreement with the experimental results. The results show that Fe(III)-modified sepiolite exhibits significant affinity for arsenic removal and it has a potential for the application in water purification processes.


2003 ◽  
Vol 21 (5) ◽  
pp. 451-462 ◽  
Author(s):  
Sameer Al-Asheh ◽  
Fawzi Banat ◽  
Leena Abu-Aitah

An improvement in the adsorption capacity of naturally available bentonite towards water pollutants such as Methylene Blue dye (MBD) is certainly needed. For this purpose, sodium bentonite was activated by two methods: (1) treatment with sodium dodecyl sulphate (SDS) as an ionic surfactant and (2) thermal treatment in an oven operated at 850°C. Batch adsorption tests were carried out on removing MBD from aqueous solution using the above-mentioned bentonites. It was found that the effectiveness of bentonites towards MBD removal was in the following order: thermal-bentonite > SDS-bentonite > natural bentonite. X-Ray diffraction analysis showed that an increase in the microscopic bentonite platelets on treatment with SDS was the reason behind the higher uptake of MBD. An increase in sorbent concentration or initial pH value of the solutions resulted in a greater removal of MBD from the solution. An increase in temperature led to an increase in MBD uptake by the bentonites studied in this work. The Freundlich isotherm model was employed and found to represent the experimental data well.


2013 ◽  
Vol 798-799 ◽  
pp. 1123-1127
Author(s):  
Hua Lei Zhou ◽  
Qiong Qiong Zhu ◽  
Dong Hua Huang

The activated carbon with high surface area was prepared by KOH activation from anthracite and used as adsorbent for removal of Cr (VI) from aqueous solution. The pore structure and surface properties were characterized by N2 adsorption at 77K, transmission electron microscope (TEM) and Fourier transform infrared spectroscopy ( FTIR). Effect of pH and isotherms at different temperature were investigated. Results show that the prepared carbon is a microporous-and mesoporous-adsorbent with developed pore structure and abundant surface oxygen-containing groups. PH value of the solution plays key function on the adsorption. The chemical adsorption dominates the adsorption process. The activated carbon exhibits much higher Cr adsorption capacity than the commercial activated carbon at initial pH of ~3. The equilibrium adsorption data are fitted by both Freundlich model and Langmuir model well.


2002 ◽  
Vol 20 (4) ◽  
pp. 393-416 ◽  
Author(s):  
Fawzi Banat ◽  
Sameer Al-Asheh ◽  
Dheaya‘ Al-Rousan

This study examined and compared the ability of chicken feathers, human hair and animal horns, as keratin-composed biosorbents, for the removal of Zn2+ and Cu2+ ions from single metal ion aqueous solutions under different operating conditions. The three biosorbents investigated in this study were all capable of adsorbing Zn2+ and Cu2+ ions from aqueous solutions. The biosorbent showing the highest uptake of Zn2+ and Cu2+ ions was animal horns. Chicken feathers showed a higher Cu2+ ion uptake and a lower Zn2+ ion compared to human hair. Increasing the initial concentration of Zn2+ or Cu2+ ions, or increasing the initial pH value, increased the metal ion uptake. Such uptake decreased when the temperature was raised from 25°C to 50°C for all adsorbent/metal ion combinations except for Zn2+ ion/human hair where the uptake increased with temperature. It was demonstrated that the addition of NaCl salt to the metal ion solution depressed the metal ion uptake. The Freundlich isotherm model was found to be applicable to the adsorption data for Cu2+ and Zn2+ ions.


2011 ◽  
Vol 236-238 ◽  
pp. 253-257
Author(s):  
Xian Zhen Zhang ◽  
De Si Sun ◽  
Hai Lin

The strain Jgj-1 was isolated from Gaoan bauxite ore. The relations of desilication of the strain Jgj-1 and the pH of solution, temperature, shaking speed, incubation time, particle size were investigated. The results shows the optimum conditions of bioleaching are as following: at 28°C, initial pH value is 7.2, particle size 0.056mm, 200rpm shaking speed, incubation 5-7 days.


2018 ◽  
Vol 7 (3.36) ◽  
pp. 170
Author(s):  
Umar M. Ibrahim ◽  
Saeed I. Ahmed ◽  
Babagana Gutti ◽  
Idris M. Muhammad ◽  
Usman D. Hamza ◽  
...  

The combination of Irish potato waste (IPW) and poultry waste (PW) can form a synergy resulting into an effective substrate for a better biogas production due to some materials they contain. In this work, optimization and kinetic study of biogas production from anaerobic digestion of IPW and PW was investigated. Response surface methodology (RSM) was applied to optimize conditions such as initial pH, solids concentrations and waste ratios. The anaerobic digestion of the two wastes was carried out in the mesophilic condition and Box-Behnken design (BBD) was used to develop and analyze a predictive model which describes the biogas yield. The results revealed that there is a good fit between the experimental and the predicted biogas yield as revealed by the coefficient of determination (R2) value of 97.93%. Optimization using quadratic RSM predicts biogas yield of 19.75% at the optimal conditions of initial pH value 7.28, solids concentration (w/v) 9.85% and waste ratio (IPW:PW) 45:55%. The reaction was observed to have followed a first order kinetics having R2 and relative squared error (RSE) values of 90.61 and 9.63% respectively. Kinetic parameters, such as rate constant and half-life of the biogas yield were evaluated at optimum conditions to be 0.0392 day-1 and 17.68 days respectively. The optimum conditions and kinetic parameters generated from this research can be used to design real bio-digesters, monitor substrate concentrations, simulate biochemical processes and predict performance of bio-digesters using IPW and PW as substrate.  


2013 ◽  
Vol 14 (2) ◽  
pp. 149-156 ◽  

This work focused on glycerol exploitation for biogas and hydrogen production. Anaerobic digestion of pure glycerol was studied in a continuous stirred tank reactor (CSTR), operated under mesophilic conditions (35oC) at various organic loading rates. The overall operation of the reactor showed that it could not withstand organic loading rates above 0.25 g COD L-1 d-1, where the maximum biogas (0.42 ± 0.05 L (g COD)-1) and methane (0.30 ± 0.04 L (g COD)-1) production were achieved. Fermentative hydrogen production was carried out in batch reactors under mesophilic conditions (35oC), using heat-pretreated anaerobic microbial culture as inoculum. The effects of initial concentration of glycerol and initial pH value on hydrogen production were studied. The highest yield obtained was 22.14 ± 0.46 mL H2 (g COD added)-1 for an initial pH of 6.5 and an initial glycerol concentration of 8.3 g COD L-1. The main metabolic product was 1.3 propanediol (PDO), while butyric and acetic acids as well as ethanol, at lower concentrations, were also determined.


Author(s):  
А. М. Morozov ◽  
А. R. Armasov ◽  
А. N. Sergeev ◽  
S. V. Zhukov ◽  
Е. А. Sobol ◽  
...  

The wound process is a set of stages that successively replace each other and as a result lead to epithelization of the skin and closure of the wound defect. The development of the wound process is influenced by the pH value of the wound contents, which determines the rate of all biochemical reactions occurring in the wound. In the course of the study, patients were measured for wound exudate in the postoperative period. It was noted that in patients with the initial values of the hydrogen index, which was 7, a more effective healing process of the postoperative wound was observed, while in patients with the initial pH value of 8, the wound process took a protracted character. 


Sign in / Sign up

Export Citation Format

Share Document