scholarly journals Wykorzystanie odpadów biodegradowalnych do produkcji biogazu jako alternatywnego źródła energii odnawialnej

2013 ◽  
Vol 11 (3) ◽  
pp. 133-144 ◽  
Author(s):  
Marlena Owczuk ◽  
Dorota Wardzińska ◽  
Anna Zamojska-Jaroszewicz ◽  
Anna Matuszewska

Waste products from the agriculture industry and other sectors are creating a waste problem with a negative environmental impact. Such effects can be minimized by further processing methods. One method, which is gaining increased importance around the world, is anaerobic digestion, for which biodegradable waste is a valuable source of raw material (Ryckebosch et al. 2011; Deublein, Steinhauser 2008). The paper discusses the technological process of biogas production, as well as the most commonly used methods of purification and refining. It also identifies the potential ways of using the resulting product (CHP, biofuels).

Author(s):  
Ainul Haezah Noruzman ◽  
Nazirah Mohd Apandi

Surface coating, paint and allied products industry is one of the major productions in the world due to the increase of urbanization and rapid development. Paint industry offers a variety of colours and types of paint to serve as needed. However, global production of paint consumption may lead to large volume of waste generated which affects people’s health and creating environmental surroundings such as landfill area, stormwater drainage and natural waterways. Therefore, this paper highlights the application of paint generally in terms of productions, treatment processes and waste management, as well as finding out the necessary steps to be taken to minimise wastes caused by productions. Furthermore, the understanding of these wastes may contribute to reduce the negative environmental impact and provide sustainable development by utilizing and promoting the paint waste as building material.


Author(s):  
Tomáš Vítěz ◽  
Tomáš Koutný ◽  
Martin Šotnar ◽  
Jan Chovanec

Due to the strict legislation currently in use for landfilling, anaerobic digestion has a strong potential as an alternative treatment for biodegradable waste. Coffee is one of the most consumed beverages in the world and spent coffee grounds (SCG) are generated in a considerable amount as a processing waste during making the coffee beverage. Chemical composition of SCG, presence of polysaccharides, proteins, and minerals makes from the SCG substrates with high biotechnological value, which might be used as valuable input material in fermentation process. The methane production ranged from 0.271–0.325 m3/kg dry organic matter.


2019 ◽  
Vol 16 (1) ◽  
pp. 15-19
Author(s):  
Natalia Głowacka ◽  
Ján Gaduš

Abstract The article reviews the energy potential of microalgae as an alternative raw material for anaerobic digestion. Currently, energy security is one of the main topics among researchers. The amount of generated fossil fuels is limited, it is a question of time when fossil fuels will not continue to be accessible at low cost. There is a need to find an alternative carrier of energy which will replace the fossil fuels in the World. Green microalgae can be proposed as a possible bio raw-material, which can be used as an input material in order to produce energy. Lots of alternative technologies of algae cultivation are currently being developed all over the world. There is a necessity to search for a sensible way to produce algal biomass for bioenergy purposes, while maintaining all requirements involved in environmental and economic issues. The research results presented in the science article show that microalgae biomass is the proper alternative material for biogas production with the method of anaerobic fermentation. We believe that these research results can contribute to the future development of all forms of renewable energy in the Slovak Republic.


Author(s):  
G. Hurst ◽  
M. Peeters ◽  
S. Tedesco

AbstractThe drive towards a low carbon economy will lead to an increase in new lignocellulosic biorefinery activities. Integration of biorefinery waste products into established bioenergy technologies could lead to synergies for increased bioenergy production. In this study, we show that solid residue from the acid hydrolysis production of levulinic acid, has hydrochar properties and can be utilised as an Anaerobic Digestion (AD) supplement. The addition of 6 g/L solid residue to the AD of ammonia inhibited chicken manure improved methane yields by +14.1%. The co-digestion of biorefinery waste solids and manures could be a promising solution for improving biogas production from animal manures, sustainable waste management method and possible form of carbon sequestration.


2020 ◽  
Vol 18 (4) ◽  
pp. 561-564
Author(s):  
Anja Antanasković ◽  
Maja Bulatović ◽  
Marica Rakin ◽  
Zorica Lopičić ◽  
Tatjana Šoštarić ◽  
...  

Anaerobic digestion is a natural process of organic material degradation by different kinds of microorganisms in the absence of oxygen. This process is used for industrial purpose to manage waste streams or to produce biogas. It gives a major contribution in reduction of harmful effects of organic waste disposal to the environment. The aim of agricultural waste pretreatment in biogas production is to decrease the retention time, improve utilization of raw material and improve the overall productivity and energy efficiency of the production process. In this paper the effects of combined chemical and mechanical pretreatment of corn straw biomass on biogas yield during anaerobic digestion of the feedstock were analyzed. The impact of pretreatment and process parameters in biogas production was analyzed by process simulation using the software SuperPro Designer. Using this tool, it was shown that alkaline pretreatment leads to an decrease of degradation time along with an increase in biogas yield.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 3014 ◽  
Author(s):  
Jakub Frankowski ◽  
Maciej Zaborowicz ◽  
Jacek Dach ◽  
Wojciech Czekała ◽  
Jacek Przybył

In relation to the situation caused by the pandemic, which may also take place in the future, there is a need to find effective solutions to improve the economic situation of the floristry industry. The production and sale of flowers is time-consuming and long-term. Therefore, any information that causes the impossibility of selling the plants will result in a reduction of profitability or bankruptcy of such companies. Research on rationally utilizing biowaste from plant cultivation as well as unsold flowers for environmental protection and effective use of their potential as a raw material for bioenergy production were examined in this article. The aim of this study was to analyze the energetic potential of the biodegradable fraction of waste from floriculture. The trials included floricultural waste containing the stems, leaves and flowers of different species and hybrid tulips (Tulipa L.), roses (Rosa L.), sunflowers (Helianthus L.) and chrysanthemums (Dendranthema Des Moul.). Their biogas and methane production as well as heat of combustion were determined experimentally. The calorific value was calculated on the basis of results from selected floricultural waste and its chemical composition. The biogas production was tested on different levels of plant material fragmentation (chaff, macerate) in fermentation processes with two ranges of temperature (meso- and thermophilic fermentation). The presented results show that the highest calorific values were determined for dry stems of roses (18,520 kJ/kg) and sunflowers (18,030 kJ/kg). In turn, the lowest were obtained for dried chrysanthemums and tulips, for which the heating value reached 15,560 kJ/kg and 15,210 kJ/kg. In addition, based on one ton of the fresh mass of biowaste from floriculture, the largest biogas production including the control was obtained from the chrysanthemum chaff by mesophilic anaerobic digestion. Moreover, the largest volume of methane was received by thermophilic anaerobic digestion of roses. The highest content of biomethane (56.68%) was reached by thermophilic fermentation of roses. The energy production of the analyzed substrates was also calculated, based on the amount of biogas produced in the containers for anaerobic digestion. Additionally, a deep neural network model, which predicted the production of methane gas, was created. Owing to the properties of the network, the level of significance of variables used for modelling and prediction of biogas production was determined. The neural modelling process was carried out with the use of the H2O program.


2019 ◽  
Vol 18 (4) ◽  
pp. 27-35
Author(s):  
N. KHORENGHY ◽  
A. LAPINSKA

The article analyzes the structure of production of cereals in the country, it is established that during the processing of grain into grains a significant part of secondary material resources (flour and husk) is formed. Therefore, it is important to use husk of cereals as raw material for biofuel production. Different methods of producing organic solid biofuels have been analyzed, and it is shown that there are shortcomings of finished products - briquettes and pellets obtained without the use of binders, one of which is the problem of transportation over long distances, during which a considerable amount of compressed biofuel is destroyed due to an increase in humidity and, consequently, a decrease in their calorific values. Fuel pellets are mainly produced without addition, while for the production of briquettes with improved quality indicators, various additives and binders are used. The purpose of the work is to substantiate the complex technology of the processing of the waste of grain mills into pressed products. Object and object of research are formulated for achievement of the set goal. The object of research is the technological process of processing of waste of cereal mills, the regimes of certain technological processes, in particular preparation of binders. The subject of research is barley and barley husk, binders (barley glue). The use of starchy raw material - flour is suggested and grounded as a binder. On the basis of experimental studies, it has been proved that the most effective method is to prepare a paste of barley flour with a content of 15% CP followed by its introduction into biofuels in the amount of 5%. The article suggests and substantiates the complex technology of processing of cereal-based waste products into pressed products (fodder mixtures and biofuels), which includes the following technological lines: a pipeline preparation line; line of preparation for the binders; line of preparation of macro components; granulation line; briquetting line. The fuel pellets produced by this technology will have 1.13 kg / m3, fragility up to 10%. The scheme of the technological process of complex processing of cereal-based waste products into pressed products is presented. The principal technological scheme for the production of a granulated feed mixture or fuel pellets of feed is a holistic system within which the subsystems A, B, B, G1, D are interconnected. The principal technological scheme for the production of briquetted biofuels is a holistic system within which interconnections' The subsystems A, B, B, G, E function functioning seamlessly.


Elkawnie ◽  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Lukhi Mulia Shitophyta ◽  
Anisa Salsabila ◽  
Firanita Anggraini ◽  
Siti Jamilatun

Abstract: Biogas promises bioenergy to be developed as a renewable fuel to reduce the fossil energy crisis. Biogas raw material can be derived from tofu liquid waste. Biogas is processed by anaerobic digestion. This study aimed to develop a simulation of the kinetic model variations of biogas production from tofu liquid waste. The results showed that the ascending limb of the exponential equation had a greater coefficient (R2 = 1) than the ascending limb of the linear equation (R2 = 0.9574). The descending limb of the linear equation had a better coefficient (R2 = 0.9574) than the descending limb of the exponential equation (R2 = 0.95). The Gaussian model had the greatest R2 of 0.9937. Logistic growth had the greatest coefficient (R2 = 0.9951) compared to modified Gompertz (R2 = 0.9817) and exponential rise to maximum (R2 = 0.9852) in the simulation of cumulative biogas production. The fit model for kinetic biogas production from tofu liquid waste is Gaussian Model.Abstrak: Biogas merupakan salah satu bioenergi yang menjanjikan untuk dikembangkan dalam mengurangi krisis energi fosil. Bahan baku biogas dapat berasal dari limbah cair tahu yang diolah secara anaerobic digestion. Penelitian ini bertujuan untuk mengembangkan variasi model simulasi kinetika produksi biogas dari limbah cair tahu. Hasil penelitian menunjukkan bahwa persamaan eksponensial untuk grafik kenaikan memilki koefisien yang lebih besar (R2 = 1) dibandingkan grafik kenaikan dengan persamaan linier (R2 = 0,9574). Grafik penurunan pada persamaan linier memiliki nilai koefisien lebih besar (R2 = 0,9574) dibandingkan grafik penurunan pada persamaan eksponensial (R2 = 0,95). Model Gaussian menghasilkan nilai  koefisien tertinggi R2 = 0,9937. Logistic growth menghasilkan nilai R2 terbesar (0,9951) dibandingkan modified Gompertz (R2 = 0,9817) dan exponential rise to maximum (R2 = 0,9852) pada simulasi produksi biogas kumulatif. Model yang paling cocok untuk kinetika produksi biogas dari limbah cair adalah model Gaussian.


2021 ◽  
Vol 50 (12) ◽  
pp. 3583-3592
Author(s):  
Norashikin Ahmad Kamal ◽  
Siti Nooraihanah Osman ◽  
Dong Yeol Lee ◽  
Marfiah Ab Wahid

The Malaysian palm oil industry has grown rapidly due to Malaysia’s tropical weather and suitable terrain. Palm oil production is now categorized as the most significant agriculture-based industry in the country. Along with strong economic returns, the palm oil industry also generates an abundance of waste products, including empty fruit bunches (EFB) (23%), mesocarp fibre (12%), shells (5%) and palm oil mill effluent (POME) (60%) for every batch of fresh fruit bunches (FFB) processed in the mills. This study is meant to fill the gap from previous studies in terms of biogas productions from the POME or the combination of POME and EFB which normally been conducted under the thermophilic conditions. The appropriate mixture ratios between POME and EFB in anaerobic digestion will reduce time of treatment and space if been conducted in the low temperature (mesophilic conditions). Thus, this paper is focuses on the analysis of batch test design which consist of low temperature (mesophilic, 20-40 °C) conditions for evaluating the performance of biogas production from the combination of POME and EFB in anaerobic digestion. The aim was to determine the amount of biogas production based on different ratios of POME and EFB mixtures. Biogas 1, containing 160 mL of fresh POME mixed with 40 g of EFB, was shredded and blended with 1800 mL seed sludge. Biogas 2, containing 120 mL of fresh POME mixed with 80 g of EFB, was shredded and blended with 1800 mL seed sludge. Based on the analysis of the results, the total production of Biogas 1 was greater than that of Biogas 2. The findings also show that the ratio of POME and 20% EFB (Biogas 1) was more efficient in producing the biogas compared to the ratio POME and 40% EFB (Biogas 2) under the mesophilic conditions. Thus, the mesophilic conditions required energy saving and low-cost process, compared to the previous studies which used the high temperature (thermophilic, 41-122 °C) that definitely was costly and require more energy consumption. This study will serve as preliminary results for enhancing the treatment methods use in Malaysia and form the early basis for the development of a new technology incorporating a combination of POME and EFB.


2019 ◽  
Vol 118 ◽  
pp. 03022
Author(s):  
Hongguang Zhu ◽  
Jing Yang ◽  
Cheng Xiaowei

The dead pig is an organic waste rich in oil and protein, and is an ideal anaerobic digestion raw material. This study based on single factor ANOVA and Modified Gompertz model. It investigated the effects of the ratio of dead pigs on biogas production by middle temperature co-digestion of pig manure and dead pigs. And the biogas production potential was determined. The results showed that there was no significant correlation between the ratio of dead pigs and the biogas production. The ratio would significantly affect the average methane content and degradation rate. When the addition ratio was in the range of 3 to 15%, the biogas production was between 191.39 and 202.44 (L/kg VS). The average contents of methane were 50.67%, 50.35%, 41.83%, 45.53% and 44.57%, respectively. The time required to reach 80% of the biogas production was 28, 34, 36, 65 and 63 days, respectively. The degradation rate of the raw materials was generally decreased with the increase of the addition ratio. The results of Modified Gompertz model fitting showed that the mixed raw materials had a fully anaerobic digestion with high utilization rate and short hysteresis in the range of 0 ~ 9%. Therefore, a hydraulic retention time (HRT) of 30 days and the addition ratio was in the range of 0 to 6% could be recommended for a continuous digester. It could get a better gas production and higher raw material utilization.


Sign in / Sign up

Export Citation Format

Share Document