scholarly journals INTEGRATED PROCESSING TECHNOLOGY OF WASTES FROM CEREAL PRODUCTION

2019 ◽  
Vol 18 (4) ◽  
pp. 27-35
Author(s):  
N. KHORENGHY ◽  
A. LAPINSKA

The article analyzes the structure of production of cereals in the country, it is established that during the processing of grain into grains a significant part of secondary material resources (flour and husk) is formed. Therefore, it is important to use husk of cereals as raw material for biofuel production. Different methods of producing organic solid biofuels have been analyzed, and it is shown that there are shortcomings of finished products - briquettes and pellets obtained without the use of binders, one of which is the problem of transportation over long distances, during which a considerable amount of compressed biofuel is destroyed due to an increase in humidity and, consequently, a decrease in their calorific values. Fuel pellets are mainly produced without addition, while for the production of briquettes with improved quality indicators, various additives and binders are used. The purpose of the work is to substantiate the complex technology of the processing of the waste of grain mills into pressed products. Object and object of research are formulated for achievement of the set goal. The object of research is the technological process of processing of waste of cereal mills, the regimes of certain technological processes, in particular preparation of binders. The subject of research is barley and barley husk, binders (barley glue). The use of starchy raw material - flour is suggested and grounded as a binder. On the basis of experimental studies, it has been proved that the most effective method is to prepare a paste of barley flour with a content of 15% CP followed by its introduction into biofuels in the amount of 5%. The article suggests and substantiates the complex technology of processing of cereal-based waste products into pressed products (fodder mixtures and biofuels), which includes the following technological lines: a pipeline preparation line; line of preparation for the binders; line of preparation of macro components; granulation line; briquetting line. The fuel pellets produced by this technology will have 1.13 kg / m3, fragility up to 10%. The scheme of the technological process of complex processing of cereal-based waste products into pressed products is presented. The principal technological scheme for the production of a granulated feed mixture or fuel pellets of feed is a holistic system within which the subsystems A, B, B, G1, D are interconnected. The principal technological scheme for the production of briquetted biofuels is a holistic system within which interconnections' The subsystems A, B, B, G, E function functioning seamlessly.

2020 ◽  
Vol 24 (2) ◽  
pp. 28-33 ◽  
Author(s):  
A.S. Kolosova ◽  
E.S. Pikalov ◽  
O.G. Selivanov

The results of the development of a raw mixture, which contains a filler obtained by grinding a mixture of small-sized wood waste based on light dirt varieties of coniferous and deciduous species, and a binder obtained by dissolving the waste products from polystyrene foam in methylene chloride, are presented. This mixture allows cold mixing and pressing followed by heat treatment at the boiling point of the solvent. In the course of experimental studies, the influence of the ratio of the mixture components and the pressing pressure on the basic properties and structure of the obtained composite material was established. The composition of the raw material mixture and the pressing were selected to ensure low thermal conductivity in combination with low values of water absorption and swelling density and strength compliant with regulatory requirements. Received thermal insulation material for construction purposes from wood and polymer waste, characterized by large volumes of formation and high rates of accumulation.


Author(s):  
D. Yelatontsev ◽  
O. Kharitonova

Today's level of integrated use of minerals and beneficiation wastes in Ukraine, in particular, at the Kryvbas GOK, is unsatisfactory, as it is generally allowing the production of additional types of construction products. The volume of mining is growing, but only a small percentage of the extracted volume is transferred to the finished product. The residue in the form of waste is returned to the environment, polluting it. The reason for this is the lack of technology for integrated mineral processing and waste disposal. The article presents the results of industrial tests of off-balance manganese ore processing technology of Ordzhonikidze GOK with a manganese content of 15–30%. It is shown that nitric acid leaching of manganese with subsequent precipitation of impurities with soda or alkali allows you to consistently purify manganese from transition and alkaline earth metals. The obtained manganese oxide has a high degree of purity, which allows obtaining pure compounds Mn (NO3)2∙6H2O, MnO2 and metallic manganese for chemical current sources. The use of columnar clarifiers with a fluidized bed with the application of pulsations allowed to eliminate time-consuming filtration processes. Concomitantly formed sodium nitrate serves as a raw material for mineral fertilizers. Experimental studies on the beneficiation of off-balance manganese ores allowed us to determine the main technological parameters of the extraction of components and to develop a technological scheme of beneficiation. According to the proposed technological scheme, it is possible to obtain high-quality concentrates of manganese (IV) oxide. The use of optimal technological parameters of enrichment allows up to 95% of Mn to be extracted from off-balance manganese raw materials. In the long run, this will reduce dependence on imports of manganese raw materials and significantly reduce the cost of domestic manganese products.


2013 ◽  
Vol 11 (3) ◽  
pp. 133-144 ◽  
Author(s):  
Marlena Owczuk ◽  
Dorota Wardzińska ◽  
Anna Zamojska-Jaroszewicz ◽  
Anna Matuszewska

Waste products from the agriculture industry and other sectors are creating a waste problem with a negative environmental impact. Such effects can be minimized by further processing methods. One method, which is gaining increased importance around the world, is anaerobic digestion, for which biodegradable waste is a valuable source of raw material (Ryckebosch et al. 2011; Deublein, Steinhauser 2008). The paper discusses the technological process of biogas production, as well as the most commonly used methods of purification and refining. It also identifies the potential ways of using the resulting product (CHP, biofuels).


2020 ◽  
pp. 22-30
Author(s):  
SERGEY N. DEVYANIN ◽  
◽  
VLADIMIR A. MARKOV ◽  
ALEKSANDR G. LEVSHIN ◽  
TAMARA P. KOBOZEVA ◽  
...  

The paper presents the results of long-term research on the oil productivity and chemical composition of soybean oil of the Northern ecotype varieties in the Central Non-Black Earth Region. The authors consider its possible use for biodiesel production. Experiments on growing soybeans were carried out on the experimental fi eld of Russian State Agrarian University –Moscow Timiryazev Agricultural Academy (2008-2019) on recognized ultra-early ripening varieties of the Northern ecotype Mageva, Svetlaya, Okskaya (ripeness group 000). Tests were set and the research results were analyzed using standard approved methods. It has been shown that in conditions of high latitudes (57°N), limited thermal resources of the Non-Chernozem zone of Russia (the sum of active temperatures of the growing season not exceeding 2000°С), the yield and productivity of soybeans depend on the variety and moisture supply. Over the years, the average yield of soybeans amounted to 1.94 … 2.62 t/ha, oil productivity – 388 … 544 kg/ha, oil content – 19…20%, the content of oleic and linoleic fatty acids in oil – 60%, and their output from seeds harvested – 300 kg/ha. It has been established that as soybean oil and diesel fuel have similar properties,they can be mixed by conventional methods in any proportions and form stable blends that can be stored for a long time. Experimental studies on the use of soybean oil for biodiesel production were carried out on a D-245 diesel engine (4 ChN11/12.5). The concentrations of toxic components (CO, CHx, and NOx) in the diesel exhaust gases were determined using the SAE-7532 gas analyzer. The smoke content of the exhaust gases was measured with an MK-3 Hartridge opacimeter. It has been experimentally established that the transfer of a diesel engine from diesel fuel to a blend of 80% diesel fuel and 20% lubrication oil leads to a change in the integral emissions per test cycle: nitrogen oxides in 0.81 times, carbon monoxide in 0.89 times and unburned hydrocarbons in 0.91 times, i.e. when biodiesel as used as a motor fuel in a serial diesel engine, emissions of all gaseous toxic components are reduced. The study has confi rmed the expediency of using soybeans of the Northern ecotype for biofuel production.


2018 ◽  
Vol 69 (7) ◽  
pp. 1695-1698
Author(s):  
Marin Rusanescu ◽  
Carmen Otilia Rusanescu ◽  
Gheorghe Voicu ◽  
Mihaela Begea

A calcium bentonite from Orasu Nou deposit (Satu Mare Romania) was used as raw material. We have conducted laboratory experiments to determine the influence of bentonite on the degree of heavy metal retention. It has been observed that the rate of retention increases as the heavy metal concentration decreases. Experimental studies have been carried out on metal retention ( Zn) in bentonite. In this paper, we realized laboratory experiments for determining the influence of metal (Zn) on the growth and development of two types of plants (Pelargonium domesticum and Kalanchoe) and the effect of bentonite on the absorption of pollutants. These flowers were planted in unpolluted soil, in heavy metal polluted soil and in heavy metal polluted soil to which bentonite was added to observe the positive effect of bentonite. It has been noticed that the flowers planted in unpolluted soil and polluted with heavy metals to which bentonite has been added, the flowers have flourished, the leaves are still green and the plants whose soils have been polluted with heavy metals began to dry after 6 days, three weeks have yellowish leaves and flowers have dried. Experiments have demonstrated the essential role of bentonite for the removal of heavy metals polluted soil.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 681
Author(s):  
Monika Sterczyńska ◽  
Marek Zdaniewicz ◽  
Katarzyna Wolny-Koładka

During the production of beer, and especially beer wort, the main wastes are spent grain and hot trub, i.e., the so-called “hot break.” Combined with yeast after fermentation, they represent the most valuable wastes. Hot trub is also one of the most valuable by-products. Studies on the chemical composition of these sediments and their rheological properties as waste products will contribute to their effective disposal and even further use as valuable pharmaceutical and cosmetic raw materials. So far, hot trub has been studied for morphology and particle distribution depending on the raw material composition and beer wort extract. However, there are no preliminary studies on the rheological properties of hot trub and hops. In particular, no attention has yet been paid to the dependence of these properties on the hop variety or different protein sources used. The aim of this study was to examine the effect of different hopping methods on hot trub viscosity and beer wort physicochemical parameters. Additionally, the hop solutions were measured at different temperatures. A microbiological analysis of hop sediments was also performed to determine the post-process survival of selected microorganisms in these wastes. For manufacturers of pumps used in the brewing industry, the most convenient material is that of the lowest viscosity. Low viscosity hot trub can be removed at lower velocities, which reduces costs and simplifies washing and transport. The sediments also had similar equilibrium viscosity values at high shear rates.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Negisa Darajeh ◽  
Azni Idris ◽  
Paul Truong ◽  
Astimar Abdul Aziz ◽  
Rosenani Abu Bakar ◽  
...  

Palm oil mill effluent (POME), a pollutant produced by the palm oil industry, was treated by the Vetiver system technology (VST). This technology was applied for the first time to treat POME in order to decrease biochemical oxygen demand (BOD) and chemical oxygen demand (COD). In this study, two different concentrations of POME (low and high) were treated with Vetiver plants for 2 weeks. The results showed that Vetiver was able to reduce the BOD up to 90% in low concentration POME and 60% in high concentration POME, while control sets (without plant) only was able to reduce 15% of BOD. The COD reduction was 94% in low concentration POME and 39% in high concentration POME, while control just shows reduction of 12%. Morphologically, maximum root and shoot lengths were 70 cm, the number of tillers and leaves was 344 and 86, and biomass production was 4.1 kg m−2. These results showed that VST was effective in reducing BOD and COD in POME. The treatment in low concentration was superior to the high concentration. Furthermore, biomass of plant can be considered as a promising raw material for biofuel production while high amount of biomass was generated in low concentration of POME.


Author(s):  
María Isabel Romero-Hermida ◽  
Antonio María Borrero-López ◽  
Vicente Flores-Alés ◽  
Francisco Javier Alejandre ◽  
José María Franco ◽  
...  

This work addresses the reuse of waste products as a raw material for lime putties, which are one of the components of mortar. 1:3 Lime/sand mortars very similar to conventional construction mortars were prepared using a lime putty obtained from the treatment of phosphogypsum with sodium hydroxide. The physical, rheological and mechanical properties of this phosphogypsum-derived mortar have been studied, as well as the mineralogical composition, microstructure by scanning electron microscope (SEM) and curing process by monitoring carbonation and ultrasonic propagation velocity. Considering the negative influence of sulphates on the hardened material, the behaviour of the material after sulphates precipitation by adding barium sulphate was additionally tested. Carbonation progressed from the outside to the inside of the specimen through the porous system by Liesegang rings patterns for mortars with soluble sulphates, while the carbonation with precipitated sulphates was controlled by diffusion-precipitation. Overall, the negative influence of low-sulphate contents on the mechanical properties of mortars was verified. It must be highlighted the importance of their precipitation to obtain adequate performance.


Author(s):  
Yuriy Hayda ◽  
◽  
Khrystyna Firman ◽  

In this article analyzes the development of trends of bioenergy crops market development in Ukraine and its current state are analysed. The possibility and feasibility of synergy of mutual development of bioenergy crops market and bio-oil market in Ukraine were noted. The necessity of state support and stimulation of bioenergy crops and different types of biofuels production in Ukraine was stated. A positive trend of growth of planted areas and production of rapeseed in Ukraine was revealed. During the study period (2013-2019) the production of rapeseed was increased by 1.4 times. The greatest energy potential for the production of bioethanol is in the sugar beet subcomplex of the agricultural sector. Over the past few years, the production of sugar beet was at its highest in 2014 (15.7 million tonnes), while the following years saw a decrease in cultivated areas of sugar beet and, consequently, a drop in its gross output - to 8.3 million tonnes in 2020. Significant resource potential for the production of bioethanol also have cereal crops (wheat, rye, barley, maize), the area under which during the last ten years remains relatively stable (14.4-15.3 million ha). Among grain crops the most effective raw material for the production of bioethanol is maize. A positive tendency of biennial growth of planted area under this crop is revealed. The space differentiation of resource base of bioenergy in Ukraine is prominent. The cluster analysis revealed three groups of areas based on the similarity of the energy resources for bioenergy purposes. Two clusters including Khmelnytskyi, Ternopil, Zhytomyr and Chernihiv, Vinnytsia, Cherkasy, Sumy, Kirovograd, Poltava and Kyiv regions should be considered as the most promising areas for concentration of capacities in biofuel production. It is noted that the trajectory of development bioenergetic sector of the country is always conditioned by compromise between compliance with optimal levels of its energy and food security.


2021 ◽  
Vol 1022 ◽  
pp. 80-86
Author(s):  
Mikhail G. Kholodnyak ◽  
Sergey A. Stelmakh ◽  
Evgeniy M. Shcherban ◽  
Mukhuma P. Nazhuev

The paper considers the current state of the mineral raw material base and the construction material market of the Rostov Region. The effect of various factors on the strain-stress behavior of local limestones has been investigated. The scientific and technical literary sources devoted to the processes of rock failure under various loads have been analyzed. The experimental studies have shown that the tested samples of limestone with a high content of cuboidal grains have characteristics comparable to those of the crushed granite stone. It has been concluded that the use of the Rostov Region limestones in the construction industry is competitive and feasible, provided the proper implementation of the engineering measures proposed in their production.


Sign in / Sign up

Export Citation Format

Share Document