Impact of Red Wine Consumption on Cardiovascular Health

2019 ◽  
Vol 26 (19) ◽  
pp. 3542-3566 ◽  
Author(s):  
Luca Liberale ◽  
Aldo Bonaventura ◽  
Fabrizio Montecucco ◽  
Franco Dallegri ◽  
Federico Carbone

Background:The devastating effects of heavy alcohol drinking have been long time recognized. In the last decades, potential benefits of modest red wine drinking were suggested. In European countries in which red wide intake is not negligible (such as France), the association between cholesterol and cardiovascular (CV) risk was less evident, suggesting the action of some protective molecules in red wine or other foods and drinks.Methods:This narrative review is based on the material searched for and obtained via PubMed up to May 2016. The search terms we used were: “red wine, cardiovascular, alcohol” in combination with “polyphenols, heart failure, infarction”.Results:Epidemiological and mechanistic evidence of a J-shaped relationship between red wine intake and CV risk further supported the “French paradox”. Specific components of red wine both in vitro and in animal models were discovered. Polyphenols and especially resveratrol largely contribute to CV prevention mainly through antioxidant properties. They exert beneficial effects on endothelial dysfunction and hypertension, dyslipidemia, metabolic diseases, thus reducing the risk of adverse CV events such as myocardial infarction ischemic stroke and heart failure. Of interest, recent studies pointed out the role of ethanol itself as a potential cardioprotective agent, but a clear epidemiological evidence is still missing. The aim of this narrative review is to update current knowledge on the intracellular mechanism underlying the cardioprotective effects of polyphenols and ethanol. Furthermore, we summarized the results of epidemiological studies, emphasizing their methodological criticisms and the need for randomized clinical trials able to clarify the potential role of red wine consumption in reducing CV risk.Conclusion:Caution in avowing underestimation of the global burden of alcohol-related diseases was particularly used.

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1382
Author(s):  
Mina Martini ◽  
Iolanda Altomonte ◽  
Domenico Tricò ◽  
Riccardo Lapenta ◽  
Federica Salari

The increase of knowledge on the composition of donkey milk has revealed marked similarities to human milk, which led to a growing number of investigations focused on testing the potential effects of donkey milk in vitro and in vivo. This paper examines the scientific evidence regarding the beneficial effects of donkey milk on human health. Most clinical studies report a tolerability of donkey milk in 82.6–98.5% of infants with cow milk protein allergies. The average protein content of donkey milk is about 18 g/L. Caseins, which are main allergenic components of milk, are less represented compared to cow milk (56% of the total protein in donkey vs. 80% in cow milk). Donkey milk is well accepted by children due to its high concentration of lactose (about 60 g/L). Immunomodulatory properties have been reported in one study in humans and in several animal models. Donkey milk also seems to modulate the intestinal microbiota, enhance antioxidant defense mechanisms and detoxifying enzymes activities, reduce hyperglycemia and normalize dyslipidemia. Donkey milk has lower calorie and fat content compared with other milks used in human nutrition (fat ranges from 0.20% to 1.7%) and a more favourable fatty acid profile, being low in saturated fatty acids (3.02 g/L) and high in alpha-linolenic acid (about 7.25 g/100 g of fat). Until now, the beneficial properties of donkey milk have been mostly related to whey proteins, among which β-lactoglobulin is the most represented (6.06 g/L), followed by α-lactalbumin (about 2 g/L) and lysozyme (1.07 g/L). So far, the health functionality of donkey milk has been tested almost exclusively on animal models. Furthermore, in vitro studies have described inhibitory action against bacteria, viruses, and fungi. From the literature review emerges the need for new randomized clinical trials on humans to provide stronger evidence of the potential beneficial health effects of donkey milk, which could lead to new applications as an adjuvant in the treatment of cardiometabolic diseases, malnutrition, and aging.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1024
Author(s):  
Sebastien Dupont ◽  
Paul Fleurat-Lessard ◽  
Richtier Gonçalves Cruz ◽  
Céline Lafarge ◽  
Cédric Grangeteau ◽  
...  

Although the functions and structural roles of sterols have been the subject of numerous studies, the reasons for the diversity of sterols in the different eukaryotic kingdoms remain unclear. It is thought that the specificity of sterols is linked to unidentified supplementary functions that could enable organisms to be better adapted to their environment. Ergosterol is accumulated by late branching fungi that encounter oxidative perturbations in their interfacial habitats. Here, we investigated the antioxidant properties of ergosterol using in vivo, in vitro, and in silico approaches. The results showed that ergosterol is involved in yeast resistance to tert-butyl hydroperoxide and protects lipids against oxidation in liposomes. A computational study based on quantum chemistry revealed that this protection could be related to its antioxidant properties operating through an electron transfer followed by a proton transfer mechanism. This study demonstrates the antioxidant role of ergosterol and proposes knowledge elements to explain the specific accumulation of this sterol in late branching fungi. Ergosterol, as a natural antioxidant molecule, could also play a role in the incompletely understood beneficial effects of some mushrooms on health.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 759
Author(s):  
Gaku Yamanaka ◽  
Fuyuko Takata ◽  
Yasufumi Kataoka ◽  
Kanako Kanou ◽  
Shinichiro Morichi ◽  
...  

Pericytes are a component of the blood–brain barrier (BBB) neurovascular unit, in which they play a crucial role in BBB integrity and are also implicated in neuroinflammation. The association between pericytes, BBB dysfunction, and the pathophysiology of epilepsy has been investigated, and links between epilepsy and pericytes have been identified. Here, we review current knowledge about the role of pericytes in epilepsy. Clinical evidence has shown an accumulation of pericytes with altered morphology in the cerebral vascular territories of patients with intractable epilepsy. In vitro, proinflammatory cytokines, including IL-1β, TNFα, and IL-6, cause morphological changes in human-derived pericytes, where IL-6 leads to cell damage. Experimental studies using epileptic animal models have shown that cerebrovascular pericytes undergo redistribution and remodeling, potentially contributing to BBB permeability. These series of pericyte-related modifications are promoted by proinflammatory cytokines, of which the most pronounced alterations are caused by IL-1β, a cytokine involved in the pathogenesis of epilepsy. Furthermore, the pericyte-glial scarring process in leaky capillaries was detected in the hippocampus during seizure progression. In addition, pericytes respond more sensitively to proinflammatory cytokines than microglia and can also activate microglia. Thus, pericytes may function as sensors of the inflammatory response. Finally, both in vitro and in vivo studies have highlighted the potential of pericytes as a therapeutic target for seizure disorders.


Author(s):  
Waill Elkhateeb ◽  
Ghoson Daba

Abstract. Elkhateeb WA, Daba GM. 2020. Review: The endless nutritional and pharmaceutical benefits of the Himalayan gold, Cordyceps; Current knowledge and prospective potentials. Biofarmasi J Nat Prod Biochem 18: 70-77. As a traditional medicine, Cordyceps has long been used in Asian nations for maintaining vivacity and boosting immunity. Numerous publications on various bioactivities of Cordyceps have been investigated in both in-vitro as well as in vivo studies. Nevertheless, the role of Cordyceps is still arguable whether it acts as food supplement for health benefits or a real healing drug that can be prescribed in medicine. The Cordyceps industry has developed greatly and offers thousands of products, commonly available in a global marketplace. In this review, focus will be on introducing the ecology of Cordyceps and their classification. Moreover, elucidation of the richness of extracts originated from this mushroom in nutritional components was presented, with description of the chemical compounds of Cordyceps and its well-known compounds such as cordycepin, and cordycepic acid. Furthermore, highlights on natural growth and artificial cultivation of famous Cordyceps species were presented. The health benefits and reported bioactivities of Cordyceps species as promising antimicrobial, anticancer, hypocholesterolemic, antioxidant, antiviral, anti-inflammatory, organ protective agent, and enhancer for organ function were presented.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yilu Zhou ◽  
Weimin Tao ◽  
Fuyi Shen ◽  
Weijia Du ◽  
Zhendong Xu ◽  
...  

Neutrophils play a vital role in the formation of arterial, venous and cancer-related thrombosis. Recent studies have shown that in a process known as NETosis, neutrophils release proteins and enzymes complexed to DNA fibers, collectively called neutrophil extracellular traps (NETs). Although NETs were originally described as a way for the host to capture and kill bacteria, current knowledge indicates that NETs also play an important role in thrombosis. According to recent studies, the destruction of vascular microenvironmental homeostasis and excessive NET formation lead to pathological thrombosis. In vitro experiments have found that NETs provide skeletal support for platelets, red blood cells and procoagulant molecules to promote thrombosis. The protein components contained in NETs activate the endogenous coagulation pathway to promote thrombosis. Therefore, NETs play an important role in the formation of arterial thrombosis, venous thrombosis and cancer-related thrombosis. This review will systematically summarize and explain the study of NETs in thrombosis in animal models and in vivo experiments to provide new targets for thrombosis prevention and treatment.


2021 ◽  
Author(s):  
Małgorzata Olszowy-Tomczyk ◽  
Łukasz Paprotny ◽  
Agnieszka Celejewska ◽  
Dorota Szewczak ◽  
Dorota Wianowska

Abstract The imbalance between the production of Reactive Oxygen Species (ROS) and their sequestration promotes the formation of so-called oxidative stress conditions which are considered crucial in the aging process and development of many human diseases. Glutathione plays an essential role in the antioxidative barricade against ROS. Its role in the detoxification process of xenobiotics and carcinogen is also known. However, there are no comparative studies on the antioxidant properties of both biological samples and glutathione as well as the change in these properties as a result of exposure to various stress factors. This paper fills this gap comparing the antioxidant activity of serum and plasma samples of the known glutathione content with the activity of glutathione itself assessed by the different methods. In addition, it reveals a significant role of environmental xenobiotics in oxidative stress and differentiates the stress induced by different groups of drugs, among which the greatest one has been demonstrated for antiarrhythmic drugs and cytostatics. More importantly, it proves that human plasma is more resistant to stress factors and N-acetylcysteine clearly promotes the extension of antioxidant properties of both the plasma and serum samples. The latter conclusion is consistent with the implied preventive and/or supportive action of this drug against SARS-CoV-2.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Bernardino Clavo ◽  
Norberto Santana-Rodríguez ◽  
Pedro Llontop ◽  
Dominga Gutiérrez ◽  
Gerardo Suárez ◽  
...  

Introduction. This article provides an overview of the potential use of ozone as an adjuvant during cancer treatment.Methods. We summarize the findings of the most relevant publications focused on this goal, and we include our related clinical experience.Results. Over several decades, prestigious journals have publishedin vitrostudies on the capacity of ozone to induce direct damage on tumor cells and, as well, to enhance the effects of radiotherapy and chemotherapy. Indirect effects have been demonstrated in animal models: immune modulation by ozone alone and sensitizing effect of radiotherapy by concurrent ozone administration. The effects of ozone in modifying hemoglobin dissociation curve, 2,3-diphosphoglycerate levels, locoregional blood flow, and tumor hypoxia provide additional support for potential beneficial effects during cancer treatment. Unfortunately, only a few clinical studies are available. Finally, we describe some works and our experience supporting the potential role of local ozone therapy in treating delayed healing after tumor resection, to avoid delays in commencing radiotherapy and chemotherapy.Conclusions.In vitroand animal studies, as well as isolated clinical reports, suggest the potential role of ozone as an adjuvant during radiotherapy and/or chemotherapy. However, further research, such as randomized clinical trials, is required to demonstrate its potential usefulness as an adjuvant therapeutic tool.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3900
Author(s):  
Jorge Moreno-Fernandez ◽  
Julio J. Ochoa ◽  
Magdalena Lopez-Frias ◽  
Javier Diaz-Castro

Early programming is the adaptation process by which nutrition and environmental factors alter development pathways during prenatal growth, inducing changes in postnatal metabolism and diseases. The aim of this narrative review, is evaluating the current knowledge in the scientific literature on the effects of nutrition, environmental factors, physical activity and sleep on development pathways. If in utero adaptations were incorrect, this would cause a mismatch between prenatal programming and adulthood. Adequate caloric intake, protein, mineral, vitamin, and long-chain fatty acids, have been noted for their relevance in the offspring brain functions and behavior. Fetus undernutrition/malnutrition causes a delay in growth and have detrimental effects on the development and subsequent functioning of the organs. Pregnancy is a particularly vulnerable period for the development of food preferences and for modifications in the emotional response. Maternal obesity increases the risk of developing perinatal complications and delivery by cesarean section and has long-term implications in the development of metabolic diseases. Physical exercise during pregnancy contributes to overall improved health post-partum. It is also interesting to highlight the relevance of sleep problems during pregnancy, which influence adequate growth and fetal development. Taking into account these considerations, we conclude that nutrition and metabolic factors during early life play a key role of health promotion and public health nutrition programs worldwide to improve the health of the offspring and the health costs of hospitalization.


2012 ◽  
Vol 7 (11) ◽  
pp. 1934578X1200701 ◽  
Author(s):  
Akiko Kojima-Yuasa ◽  
Yohei Deguchi ◽  
Yotaro Konishi ◽  
Isao Matsui-Yuasa

1,5-Anhydro-D-fructose (1,5-AF) is a monosaccharide that shares a structural similarity to glucose. 1,5-AF is found in fungi, algae, Escherichia coli and rat liver and is produced by the degradation of starch and glycogen, which is catalyzed by the enzyme α-1,4-glucan lyase. However, the physiological role of 1,5-AF in mammalian tissues is not well understood. Here, we investigated the anti-obesity potential of 1,5-AF on adipogenesis in 3T3-L1 adipocytes. 1,5-AF caused a significant decrease in GPDH activity in 3T3-L1 preadipocytes and mature adipocytes without eliciting cytotoxicity, and inhibited cellular lipid accumulation through down-regulation of transcription factors such as PPARγ and C/EBPα. 1,5-AF also induced dose-dependent phosphorylation of AMP-activated protein kinase (AMPK), a cellular energy sensor. However, the total AMPK protein content remained unchanged. Furthermore, 1,5-AF increased the levels of reactive oxygen species, an important upstream signal for AMPK activation in 3T3-L1 adipocytes. Our results show that 1,5-AF exerts anti-obesity action in vitro and suggest that 1,5-AF is potentially a novel preventative agent for obesity and other metabolic diseases.


Sign in / Sign up

Export Citation Format

Share Document