Recent Advances in Gelatin-Based Nanomedicine for Targeted Delivery of Anti-Cancer Drugs

2021 ◽  
Vol 27 ◽  
Author(s):  
Faisal Raza ◽  
Liu Siyu ◽  
Hajra Zafar ◽  
Zul Kamal ◽  
Bo Zheng ◽  
...  

: Nanoparticles based on natural polymers are utilized for the development of a wide range of drug delivery systems (DDS) in the current era. Gelatin-based nanoparticles, for example, are a remarkable cancer therapy with high efficacy and specificity. This paper reviews the recent advancements in gelatin-based nanomedicine for use in cancer therapeutics. Due to the characteristics features of gelatin, such as biocompatibility, biodegradability, stability, and good surface properties, these nanoparticles provide high therapeutic potency in cancer nanomedicine. The surface of gelatin can be modified in a number of ways using various ligands to explore the platform for the development of a more novel DDS. Various methods are available for the preparation of gelatin nanomedicine discussed in this review. In addition, various cross-linkers to stabilized nanocarriers and stimuli base gelatin nanoparticles are reviewed. Furthermore, recent advances and research in gelatin-based nanomedicine are discussed. Also, some drawbacks and challenges are evaluated. In general, this paper paves the pathway to identify the details about the gelatin-based DDS for cancer therapy.

Medicines ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 74 ◽  
Author(s):  
Purushottam Lamichhane ◽  
Rahul Deshmukh ◽  
Julie Brown ◽  
Silvia Jakubski ◽  
Priyanka Parajuli ◽  
...  

Checkpoint inhibition (CPI) therapies have been proven to be powerful clinical tools in treating cancers. FDA approvals and ongoing clinical development of checkpoint inhibitors for treatment of various cancers highlight the immense potential of checkpoint inhibitors as anti-cancer therapeutics. The occurrence of immune-related adverse events, however, is a major hindrance to the efficacy and use of checkpoint inhibitors as systemic therapies in a wide range of patients. Hence, methods of sustained and tumor-targeted delivery of checkpoint inhibitors are likely to improve efficacy while also decreasing toxic side effects. In this review, we summarize the findings of the studies that evaluated methods of tumor-targeted delivery of checkpoint inhibitors, review their strengths and weaknesses, and discuss the outlook for therapeutic use of these delivery methods.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1497
Author(s):  
Kajal H. Gupta ◽  
Christina Nowicki ◽  
Eileena F. Giurini ◽  
Amanda L. Marzo ◽  
Andrew Zloza

Currently approximately 10 million people die each year due to cancer, and cancer is the cause of every sixth death worldwide. Tremendous efforts and progress have been made towards finding a cure for cancer. However, numerous challenges have been faced due to adverse effects of chemotherapy, radiotherapy, and alternative cancer therapies, including toxicity to non-cancerous cells, the inability of drugs to reach deep tumor tissue, and the persistent problem of increasing drug resistance in tumor cells. These challenges have increased the demand for the development of alternative approaches with greater selectivity and effectiveness against tumor cells. Cancer immunotherapy has made significant advancements towards eliminating cancer. Our understanding of cancer-directed immune responses and the mechanisms through which immune cells invade tumors have extensively helped us in the development of new therapies. Among immunotherapies, the application of bacteria and bacterial-based products has promising potential to be used as treatments that combat cancer. Bacterial targeting of tumors has been developed as a unique therapeutic option that meets the ongoing challenges of cancer treatment. In comparison with other cancer therapeutics, bacterial-based therapies have capabilities for suppressing cancer. Bacteria are known to accumulate and proliferate in the tumor microenvironment and initiate antitumor immune responses. We are currently well-informed regarding various methods by which bacteria can be manipulated by simple genetic engineering or synthetic bioengineering to induce the production of anti-cancer drugs. Further, bacterial-based cancer therapy (BBCT) can be either used as a monotherapy or in combination with other anticancer therapies for better clinical outcomes. Here, we review recent advances, current challenges, and prospects of bacteria and bacterial products in the development of BBCTs.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 395
Author(s):  
Aikaterini Berdiaki ◽  
Monica Neagu ◽  
Eirini-Maria Giatagana ◽  
Andrey Kuskov ◽  
Aristidis M. Tsatsakis ◽  
...  

The tumor microenvironment (TME) is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded by the components of the extracellular matrix (ECM). Glycosaminoglycans (GAGs), natural biomacromolecules, essential ECM, and cell membrane components are extensively altered in cancer tissues. During disease progression, the GAG fine structure changes in a manner associated with disease evolution. Thus, changes in the GAG sulfation pattern are immediately correlated to malignant transformation. Their molecular weight, distribution, composition, and fine modifications, including sulfation, exhibit distinct alterations during cancer development. GAGs and GAG-based molecules, due to their unique properties, are suggested as promising effectors for anticancer therapy. Considering their participation in tumorigenesis, their utilization in drug development has been the focus of both industry and academic research efforts. These efforts have been developing in two main directions; (i) utilizing GAGs as targets of therapeutic strategies and (ii) employing GAGs specificity and excellent physicochemical properties for targeted delivery of cancer therapeutics. This review will comprehensively discuss recent developments and the broad potential of GAG utilization for cancer therapy.


Nano Today ◽  
2021 ◽  
Vol 38 ◽  
pp. 101119
Author(s):  
Masoud Delfi ◽  
Rossella Sartorius ◽  
Milad Ashrafizadeh ◽  
Esmaeel Sharifi ◽  
Yapei Zhang ◽  
...  

Pharmaceutics ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 534 ◽  
Author(s):  
Vijayan ◽  
Mohapatra ◽  
Uthaman ◽  
Park

The development of vaccines plays a vital role in the effective control of several fatal diseases. However, effective prophylactic and therapeutic vaccines have yet to be developed for completely curing deadly diseases, such as cancer, malaria, HIV, and serious microbial infections. Thus, suitable vaccine candidates need to be designed to elicit appropriate immune responses. Nanotechnology has been found to play a unique role in the design of vaccines, providing them with enhanced specificity and potency. Nano-scaled materials, such as virus-like particles, liposomes, polymeric nanoparticles (NPs), and protein NPs, have received considerable attention over the past decade as potential carriers for the delivery of vaccine antigens and adjuvants, due to their beneficial advantages, like improved antigen stability, targeted delivery, and long-time release, for which antigens/adjuvants are either encapsulated within, or decorated on, the NP surface. Flexibility in the design of nanomedicine allows for the programming of immune responses, thereby addressing the many challenges encountered in vaccine development. Biomimetic NPs have emerged as innovative natural mimicking biosystems that can be used for a wide range of biomedical applications. In this review, we discuss the recent advances in biomimetic nanovaccines, and their use in anti-bacterial therapy, anti-HIV therapy, anti-malarial therapy, anti-melittin therapy, and anti-tumor immunity.


2019 ◽  
Vol 9 (1-s) ◽  
pp. 408-415 ◽  
Author(s):  
Rupalben Kaushalkumar Jani ◽  
Gohil Krupa

In nanomedicines, currently a wide array of reported nanoparticle systems is being explored by targeting schemes which suggests great potential of targeted delivery to revolutionize cancer therapeutics. This review  gives insight into recent  challenges in modification of nanoparticle systems for enhanced cancer therapy  acknowledged by researchers to date and also outlines different major targeting strategies of nanoparticle systems that have been utilized for the delivery of therapeutics or imaging agents, targeting ligand and cross-linking agent to cancer  which was divided into three sections: 1) Angiogenesis associated targeting, 2) Uncontrolled cell proliferation targeting and 3) Tumor cell targeting. Keywords: nanoparticles, tumor cells, active targeting, targeting strategies, targeting ligands


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3483-3483 ◽  
Author(s):  
Richard A. Campbell ◽  
Eric Sanchez ◽  
Haiming Chen ◽  
Lauren Turker ◽  
Olivia Trac ◽  
...  

Abstract Histone deacetylase (HDAC) inhibitors represent a new mechanistic class of anti-cancer therapeutics that inhibit HDAC enzymes and have been shown to have anti-proliferative effects in cancer cells (including drug resistance subtypes), induce apoptosis, inhibit angiogenesis, and sensitize cancer cells when combined with other available anti-cancer therapies. PXD101 is a novel investigational small molecule drug that selectively inhibits HDAC enzymes. In recent preclinical studies, PXD101 has been shown to have the potential to treat a wide range of solid and hematological malignancies either as a monotherapy or in combination with other active agents. In this study, we evaluated the activity of PXD101 on multiple myeloma samples when used as monotherapy or in combination with the proteasome inhibitor bortezomib. In vitro experiments indicated that PXD101 pretreatment (20 mM; 3h) sensitized RPMI-8226 human multiple myeloma cells to subsequent bortezomib exposure (5 nM; 72h). To examine PXD101 and bortezomib in vivo, two mouse models of human multiple myeloma were utilized (LAGλ-1 and LAGκ-1B). LAGλ-1 was generated from a patient resistant to melphalan therapy and LAGκ-1B from a patient who progressed on bortezomib treatment (Campbell et al, International Journal of Oncology 2006). SCID mice were implanted with LAGλ-1 or LAGκ-1B tumor fragments into the left superficial gluteal muscle. Tumors were allowed to grow for 14 days at which time human IgG levels were detectable in the mouse serum, and mice were randomly assigned into treatment groups. Groups consisted of Vehicle only, PXD101 alone (40 mg/kg), bortezomib alone (0.5 mg/kg), or PXD101 (40 mg/kg) + bortezomib (0.5 mg/kg). In one cohort, PXD101 and bortezomib were administered twice weekly (M, Th) and in another cohort PXD101 was administered 5 days a week (M-F) and bortezomib twice weekly (M, Th). When administered, PXD101 was given i.p twice daily and bortezomib once daily intravenously. The results of these animal experiments will provide preclinical information on the activity of PXD101 monotherapy and PXD101/bortezomib combination therapy on drug-resistant myeloma samples, and may help to define the optimal schedule for potential clinical evaluation of this drug combination.


2019 ◽  
Author(s):  
Frank B. Ye ◽  
Akil Hamza ◽  
Tejomayee Singh ◽  
Stephane Flibotte ◽  
Philip Hieter ◽  
...  

ABSTRACTNew anti-cancer therapeutics require extensive in vivo characterization to identify endogenous and exogenous factors affecting efficacy, to measure toxicity and mutagenicity, and to determine genotypes resulting in therapeutic sensitivity or resistance. We used Caenorhabditis elegans as a platform with which to characterize properties of anti-cancer therapeutic agents in vivo. We generated a map of chemigenetic interactions between DNA damage response mutants and common DNA damaging agents. We used this map to investigate the properties of the new anti-cancer therapeutic CX-5461. We phenocopied the photoreactivity observed in CX-5461 clinical trials and found that CX-5461 generates reactive oxygen species when exposed to UVA radiation. We demonstrated that CX-5461 is a mutator, resulting in both large copy number variations and a high frequency of single nucleotide variations (SNVs). CX-5461-induced SNVs exhibited a distinct mutational signature. Consistent with the wide range of CX-5461-induced mutation types, we found that multiple repair pathways were needed for CX-5461 tolerance. Together, the data from C. elegans demonstrate that CX-5461 is a multimodal DNA damaging agent with strong similarity to ellipticines, a class of antineoplastic agents, and to anthracycline-based chemotherapeutics.


Author(s):  
Wenxing Song ◽  
Xing Su ◽  
David Gregory ◽  
Wei Li ◽  
Zhiqiang Cai ◽  
...  

Curcumin is a promising anti-cancer drug but its applications in cancer therapy are limited due to its poor solubility, short half-life and low bioavailability. In this study, curcumin loaded magnetic alginate / chitosan nanoparticles were fabricated to improve the bioavailability, uptake efficiency and cytotoxicity of curcumin to MDA-MB-231 breast cancer cells. Alginate and chitosan were deposited on Fe3O4 magnetic nanoparticles based on their electrostatic properties. The sizes of the nanoparticles (120-200 nm) were within the optimum range for drug delivery. Sustained curcumin release was obtained use the nanoparticles with the ability to control the curcumin release rate by altering the number of chitosan and alginate layers. Confocal fluorescence microscopy results showed that targeted delivery of curcumin with the aid of magnetic field were achieved. The FACS assay indicated that MDA-MB-231 cells treated with curcumin loaded nanoparticles had a 3-6 folds uptake efficiency to those treated with free curcumin. MTT assay indicated that the curcumin loaded nanoparticles exhibited significantly higher cytotoxicity toward MDA-MB-231 cells than toward HDF cells. The sustained release profiles, enhanced uptake efficiency and cytotoxicity to cancer cells as well as the targeting potential make MACPs a promising candidate for cancer therapy.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Mina Homayoonfal ◽  
Zatollah Asemi ◽  
Bahman Yousefi

AbstractCancer is a global disease involving transformation of normal cells into tumor types via numerous mechanisms, with mortality among all generations, in spite of the breakthroughs in chemotherapy, radiotherapy and/or surgery for cancer treatment. Since one in six deaths is due to cancer, it is one of the overriding priorities of world health. Recently, bioactive natural compounds have been widely recognized due to their therapeutic effects for treatment of various chronic disorders, notably cancer. Thymoquinone (TQ), the most valuable constituent of black cumin seeds, has shown anti-cancer characteristics in a wide range of animal models. The revolutionary findings have revealed TQ’s ability to regulate microRNA (miRNA) expression, offering a promising approach for cancer therapy. MiRNAs are small noncoding RNAs that modulate gene expression by means of variation in features of mRNA. MiRNAs manage several biological processes including gene expression and cellular signaling pathways. Accordingly, miRNAs can be considered as hallmarks for cancer diagnosis, prognosis and therapy. The purpose of this study was to review the various molecular mechanisms by which TQ exerts its potential as an anti-cancer agent through modulating miRNAs.


Sign in / Sign up

Export Citation Format

Share Document