Growth and oleanolic acid accumulation of Polyscias fruticosa cell suspension cultures

Author(s):  
Phan Thi A Kim ◽  
Le Thi Binh An ◽  
Nguyen Thanh Chung ◽  
Nguyen Tien Truong ◽  
Le Thi Anh Thu ◽  
...  

Background: Oleanolic acid is an oleanane triterpene found in many plant species all over the world. This compound is also a major saponin in leaves of Polyscias fruticosa and possess several promising pharmacological activities, such as hepatoprotective effects, and anti-inflammatory, antioxidant, or anticancer activities. Objective: The objective of the present work is to establish cell suspension culture of P. fruticosa, investigate influence of several factors such as plant growth regulators and carbon source on cell growth, and determine their oleanolic acid content. Method: Cell culture was carried out by using 2 g fresh weight of 30 day old friable callus derived from in vitro stem segment in 50 mL of liquid medium with a shaking speed of 120 rpm. Culture was then incubated at 25±2ºC with a shaking speed of 120 rpm in the period of 12 h daylight at light intensity of about 6.75 µmol/m2 /s. Cell growth was measured by fresh and dry biomass at 16h day. Oleanolic acid content was determined using HPLC analysis. Results & Discussion: The study results showed that MS medium containing 2% sucrose as a carbon source, supplemented with 1 mg/L 6-benzylaminopurine and 0.5 mg/L 2,4-D dichlorophenoxyacetic acid was the most appropriate growth medium. Cell biomass and oleanolic acid content reached the highest values of 0.43 g dry weight/flask and 25.4 mg/g dry weight, respectively. Conclusion: These results indicated the potential production of oleanolic acid, a compound with high pharmacological value, from P. fruticosa cell culture.

2015 ◽  
Vol 84 (1) ◽  
pp. 125-132 ◽  
Author(s):  
Paulina Mistrzak ◽  
Hanna Celejewska-Marciniak ◽  
Wojciech J. Szypuła ◽  
Olga Olszowska ◽  
Anna K. Kiss

The aim of our study was to investigate the presence and quantitative contents of lignans in the tissues of <em>Taxus</em> ×<em>media</em>. The presence of the lignans: pinoresinol, matairesinol and secoisolariciresinol was assessed in needles, shoots cultures and suspension culture. Pinoresinol was the only lignan found in the tissue of <em>T.</em> ×<em>media</em>. The total pinoresinol content in the needles and in the shoots was 1.24 mg/g dry weight (dw) and 0.69 mg/g dw, respectively. Most of the pinoresinol identified was appeared glycosidically bound. In needles, the amount of glycosidically bound pinoresinol (0.81 mg/g dw) was about twice as high as that of free pinoresinol (0.43 mg/g dw). The content of free and glycosidically bound pinoresinol showed the level of 0.18 mg/g dw and 0.51 mg/g dw, respectively in the in vitro shoot cultures. In the cell culture, no pinoresinol was found.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4669
Author(s):  
Jameel Mohammed Al-Khayri ◽  
Poornananda Madhava Naik

Plants that synthesize bioactive compounds that have high antioxidant value and elicitation offer a reliable in vitro technique to produce important nutraceutical compounds. The objective of this study is to promote the biosynthesis of these phenolic compounds on a large scale using elicitors in date palm cell suspension culture. Elicitors such as pectin, yeast extract (YE), salicylic acid (SA), cadmium chloride (CdCl2), and silver nitrate (AgNO3) at 50, 100, and 200 mg/L concentrations are used. The effects of elicitors on cell culture were determined in terms of biomass [packed cell volume (PCV), fresh and dry weight], antioxidant activity, and phenolic compounds (catechin, caffeic acid, kaempferol, apigenin) were determined using high-performance liquid chromatography (HPLC). Results revealed that enhanced PCV (12.3%), total phenolic content [317.9 ± 28.7 mg gallic acid equivalents (GAE)/100 g of dry weight (DW)], and radical scavenging activity (86.0 ± 4.5%) were obtained in the 50 mg/L SA treated cell culture of Murashige and Skoog (MS) medium. The accumulation of optimum catechin (26.6 ± 1.3 µg/g DW), caffeic acid (31.4 ± 3.8 µg/g DW), and kaempferol (13.6 ± 1.6 µg/g DW) was found in the 50 mg/L SA-treated culture when compared to the control. These outcomes could be of great importance in the nutraceutical and agronomic industries.


Author(s):  
Д.С. Островский ◽  
С.А. Борзенок ◽  
И.Н. Сабурина ◽  
Б.Э. Малюгин ◽  
И.А. Мушкова ◽  
...  

Предложена модель in vitro изучения биологической совместимости и токсичности полимерных материалов на культурах клеток стромы роговицы человека - кератоцитах (КЦ). Цель исследования - изучение возможности использования выделенных культур кератоцитов донора-трупа человека для оценки биосовместимости полимерных материалов. Методика. Из роговицы трупного донорского глаза получали первичную культуру КЦ и пересевали до 4-го пассажа. Фенотип КЦ подтверждали методом иммуноцитохимического окрашивания с выявлением основных клеточных маркеров. КЦ культивировали в присутствии образцов полимерных материалов - четырех модификаций бисфенол-А-глицедилметакрилата (бис-ГМА) по 24 образца каждого (4 экспериментальные группы). В качестве группы сравнения 1 использовали образцы из полиметилметакрилата (ПММА) идентичной геометрии (24 образца), группа сравнения 2 - КЦ, культивированные по стандартной методике без полимерных образцов (24 образца). КЦ в каждой группе распределяли по 24 лункам культурального планшета, культивировали на протяжении 6 сут., ежедневно КЦ извлекали из четырех лунок в каждой группе и подсчитывали. Анализируя динамику клеточного роста и качественное состояние образцов полимеров, делали вывод о типе биологической совместимости исследуемых материалов. Результаты. Все кривые клеточного роста имели восходящую S-образную форму, количество клеток статистически значимо увеличивалось со 2-х по 4-е сут. и замедлялось к 6-м сут. Среди исследованных материалов бис-ГМА № 3 проявил наименьшую способность обеспечивать адгезию культивируемых клеток, бис-ГМА № 1 и № 2 - наибольшую. Результаты статистически значимы. Заключение. Проведенные исследования показали высокую информативность использования предложенной методики для определения биологической совместимости искусственных материалов. Исходя из полученных результатов, все исследуемые материалы были отнесены к числу биологически активных. Образцы исследуемых материалов в клеточной культуре статистически значимо влияют на уровень клеточной адгезии и степень пролиферации. An in vitro model was proposed for studying biocompatibility and toxicity of polymeric materials in cultures of human corneal stromal cells, keratocytes (KCs). The aim of the present research was to study a possibility of using cultures of isolated human KCs to assess biocompatibility of polymeric materials. Materials and methods. The primary KC culture was obtained from donor’s eye cornea and cultured to the 4th passage. The KC phenotype was confirmed by immunocytochemical staining, and the major cell markers were identified. KCs were cultured in the presence of four modifications of bisphenol-A-glycidyl methacrylate (bis-HMA) polymeric materials (24 replicate samples for each modification). Polymethylmethacrylate (PMMA) samples of identical geometry were used in the first comparison group (24 samples). In the second comparison group, KCs were cultured according to a standard procedure without polymer samples (24 wells). In each group, KCs were distributed to 24 wells of the culture plate and cultured for 6 days; cells were counted daily. Based on the dynamics of cell growth and qualitative condition of polymer samples, we made a conclusion about the type of biological compatibility of the materials under study. Results. All cell growth curves had an upward S shape; the number of cells increased statistically significantly from day 2 to day 4 (p <0.05) and slowed by day 6 (p>0.05). Among the studied materials, bis-HMA #3 showed the weakest ability (p <0.05) and bis-HMA #1 and #2 - the greatest ability (p<0.05) to provide adhesion of cultured cells. Conclusion. The study showed a high informative value of the proposed method for determining biological compatibility of artificial materials. All studied materials were classified as biologically active. Samples of the studied materials statistically significantly affected cell adhesion and proliferation in the cell culture.


2019 ◽  
Author(s):  
Yinchi Pan ◽  
Delin Xu ◽  
Shiji Xiao ◽  
Zhongjie Chen ◽  
Surendra Sarsaiya ◽  
...  

AbstractBletilla striata (Orchidaceae) is a well-recognized endangered medicinal plant due to inadequate natural reproduction with high market worth. To evaluate the cell growth kinetics and accumulation of secondary metabolites (SMs), the cell suspension culture is proved to be a valuable approach for acquiring the high yield of medicinal parts. An effective cell suspension culture for obtaining B. striata cell growth and its SMs was in vitro induction of callus from B. striata seeds. The cell growth kinetics and accumulation of SMs were analyzed using the mathematical model. Results cell growth kinetic model revealed that the growth curve of B. striata suspension cells was curved as sigmoid shape, indicating the changes of the growth curve of suspension cells. Improved Murashige and Skoog cell growth medium was the utmost favorable medium for B. striata callus formation with the highest cell growth during the stationary phase of cultivation period, the cell growth acceleration was started after 7 days and thereafter gradually decrease at 24 day and then reached to highest at 36 day of cultivation period in both dry weight and fresh weight. The coelonin concentration was peak during exponential growth stage and decreased afterward at the stationary phase in the cell suspension culture. The maximum content of coelonin (about 0.3323 mg/g cell dry weight) was observed on the 18th day of the cultivation cycle while the dactylorhin A and militarine reached highest at 24 day, and p-hydroxybenzyl alcohol at 39 day. This investigation also laid a foundation for multi-mathematical model to better describe the accumulation variation of SMs. The production of SMs had shown great specificity during cells growth and development. This research provided a well-organized way to more accumulation and production of SMs, on scale-up biosynthesis in B. striata cell suspension culture.


2003 ◽  
Vol 58 (5-6) ◽  
pp. 308-312 ◽  
Author(s):  
Zuzanna Skrzypek ◽  
Halina Wysokińska

Abstract Cell suspension cultures from hypocotyl-derived callus of Hyssopus officinalis were found to produce two sterols i. e. β-sitosterol (1) and stigmasterol (2), as well as several known pentacyclic triterpenes with an oleanene and ursene skeleton. The triterpenes were identified as oleanolic acid (3), ursolic acid (4), 2α, 3β-dihydroxyolean-12-en-28-oic acid (5), 2α, 3β- dihydroxyurs-12-en-28-oic acid (6), 2α, 3β, 24-trihydroxyolean-12-en-28-oic acid (7), and 2α,3β, 24-trihydroxyurs-12-en-28-oic acid (8). Compounds 5-8 were isolated as their acetates (6, 8) or bromolactone acetates(5, 7)


1994 ◽  
Vol 16 (8) ◽  
pp. 853-858 ◽  
Author(s):  
M. Rodr�guez Monroy ◽  
A. Jim�nez Aparicio ◽  
G. D�vila Ort�z ◽  
G. Sep�lveda Jim�nez

Author(s):  
Mehdi Talebi ◽  
Mousa Vatanmakanian ◽  
Ali Mirzaei ◽  
Yaghoub Barfar ◽  
Maryam Hemmatzadeh ◽  
...  

Background: Platelet-rich (PRP) and Platelet-poor plasma (PPP) are widely used in research and clinical platforms mainly due to their capacities to enhance cell growth. Although short half-life (5 days) and the high price of platelet products pose challenges regarding their usage, they maintain the growth regulatory functions for weeks. Thus, we aimed to assess the supplementary values of these products in human CCRF-CEM cancer cells. Mechanistically, we also checked if the PRP/PPP treatment enhances YKL-40 expression as a known protein regulating cell growth. Methods: The PRP/PPP was prepared from healthy donors using manual stepwise centrifugation and phase separation. The viability of the cells treated with gradient PRP/PPP concentrations (2, 5, 10, and 15%) was measured by the MTT assay. The YKL-40 mRNA and protein levels were assessed using qRT-PCR and western blotting. The data were compared to FBS-treated cells. Result: Our findings revealed that the cells treated by PRP/PPP not only were morphologically comparable to those treated by FBS but also, they showed greater viability at the concentrations of 10 and 15%. Moreover, it was shown that PRP/PPP induce cell culture support, at least in part, via inducing YKL-40 expression at both mRNA and protein levels in a time- and dose-dependent manner. Conclusion: Collectively, by showing cell culture support comparable to FBS, the PRP/PPP might be used as good candidates to supplement the cancer cell culture and overcome concerns regarding the use of FBS as a non-human source in human cancer research.


Mutagenesis ◽  
2019 ◽  
Author(s):  
Masahiko Watanabe ◽  
Masae Toudou ◽  
Taeko Uchida ◽  
Misato Yoshikawa ◽  
Hiroaki Aso ◽  
...  

Abstract Mutations in oncogenes or tumour suppressor genes cause increases in cell growth capacity. In some cases, fully malignant cancer cells develop after additional mutations occur in initially mutated cells. In such instances, the risk of cancer would increase in response to growth of these initially mutated cells. To ascertain whether such a situation might occur in cultured cells, three independent cultures of human lymphoblastoid GM00130 cells were treated with N-ethyl-N-nitrosourea to induce mutations, and the cells were maintained for 12 weeks. Mutant frequencies and spectra of the cells at the MspI and HaeIII restriction sites located at codons 247–250 of the TP53 gene were examined. Mutant frequencies at both sites in the gene exhibited a declining trend during cell culture and reached background levels after 12 weeks; this was also supported by mutation spectra findings. These results indicate that the mutations detected under our assay conditions are disadvantageous to cell growth.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1276
Author(s):  
Olga A. Aleynova ◽  
Andrey R. Suprun ◽  
Nikolay N. Nityagovsky ◽  
Alexandra S. Dubrovina ◽  
Konstantin V. Kiselev

Plant endophytes are known to alter the profile of secondary metabolites in plant hosts. In this study, we identified the main bacterial and fungal representatives of the wild grape Vitis amurensis Rupr. microbiome and investigated a cocultivation effect of the 14 endophytes and the V. amurensis cell suspension on biomass accumulation and stilbene biosynthesis. The cocultivation of the V. amurensis cell culture with the bacteria Agrobacterium sp., Bacillus sp., and Curtobacterium sp. for 2 weeks did not significantly affect the accumulation of cell culture fresh biomass. However, it was significantly inhibited by the bacteria Erwinia sp., Pantoea sp., Pseudomonas sp., and Xanthomonas sp. and fungi Alternaria sp., Biscogniauxia sp., Cladosporium sp., Didymella sp. 2, and Fusarium sp. Cocultivation of the grapevine cell suspension with the fungi Didymella sp. 1 and Trichoderma sp. resulted in cell death. The addition of endophytic bacteria increased the total stilbene content by 2.2–5.3 times, while the addition of endophytic fungi was more effective in inducing stilbene accumulation by 2.6–16.3 times. The highest content of stilbenes in the grapevine cells cocultured with endophytic fungi was 13.63 and 13.76 mg/g of the cell dry weight (DW) after cultivation with Biscogniauxia sp. and Didymella sp. 2, respectively. The highest content of stilbenes in the grapevine cells cocultured with endophytic bacteria was 4.49 mg/g DW after cultivation with Xanthomonas sp. The increase in stilbene production was due to a significant activation of phenylalanine ammonia lyase (PAL) and stilbene synthase (STS) gene expression. We also analyzed the sensitivity of the selected endophytes to eight antibiotics, fluconazole, and trans-resveratrol. The endophytic bacteria were sensitive to gentamicin and kanamycin, while all selected fungal strains were resistant to fluconazole with the exception of Cladosporium sp. All endophytes were tolerant of trans-resveratrol. This study showed that grape endophytes stimulate the production of stilbenes in grape cell suspension, which could further contribute to the generation of a new stimulator of stilbene biosynthesis in grapevine or grape cell cultures.


Author(s):  
Changhong Li ◽  
Kui Zhang ◽  
Guangzhao Pan ◽  
Haoyan Ji ◽  
Chongyang Li ◽  
...  

Abstract Background Dehydrodiisoeugenol (DEH), a novel lignan component extracted from nutmeg, which is the seed of Myristica fragrans Houtt, displays noticeable anti-inflammatory and anti-allergic effects in digestive system diseases. However, the mechanism of its anticancer activity in gastrointestinal cancer remains to be investigated. Methods In this study, the anticancer effect of DEH on human colorectal cancer and its underlying mechanism were evaluated. Assays including MTT, EdU, Plate clone formation, Soft agar, Flow cytometry, Electron microscopy, Immunofluorescence and Western blotting were used in vitro. The CDX and PDX tumor xenograft models were used in vivo. Results Our findings indicated that treatment with DEH arrested the cell cycle of colorectal cancer cells at the G1/S phase, leading to significant inhibition in cell growth. Moreover, DEH induced strong cellular autophagy, which could be inhibited through autophagic inhibitors, with a rction in the DEH-induced inhibition of cell growth in colorectal cancer cells. Further analysis indicated that DEH also induced endoplasmic reticulum (ER) stress and subsequently stimulated autophagy through the activation of PERK/eIF2α and IRE1α/XBP-1 s/CHOP pathways. Knockdown of PERK or IRE1α significantly decreased DEH-induced autophagy and retrieved cell viability in cells treated with DEH. Furthermore, DEH also exhibited significant anticancer activities in the CDX- and PDX-models. Conclusions Collectively, our studies strongly suggest that DEH might be a potential anticancer agent against colorectal cancer by activating ER stress-induced inhibition of autophagy.


Sign in / Sign up

Export Citation Format

Share Document