Raising climate resilient crops: Journey from the conventional breeding to new breeding approaches

2021 ◽  
Vol 22 ◽  
Author(s):  
Yashika Gaba ◽  
Ashwani Pareek ◽  
Sneh Lata Singla-Pareek

Background: In order to meet the demands of ever-increasing human population, it has become necessary to raise climate-resilient crops. Plant breeding which involves crossing and selecting superior gene pools has contributed tremendously towards achieving this goal during the past few decades. The relatively newer methods of crop improvement based on genetic engineering are relatively simple and targets can be achieved in an expeditious manner. More recently emerged genome editing technique using CRISPR has raised strong hopes among plant scientists for precise integration of valuable traits and removal of undesirable ones. Conclusion: Genome editing using Site Specific Nucleases (SSNs) is a good alternative to the plant breeding and genetic engineering approaches as it can modify the genomes specifically and precisely at the target site in the host genome. Another added advantage of the genome editing approach is the simpler biosafety regulations that have been adopted by many countries for commercialization of the products thus generated. This review provides a critical assessment of the available methods for improving the stress tolerance in crop plants. Special emphasis has been given on genome editing approach in light of the diversity of tools which are being discovered on everyday basis and the practical applications of the same. This information will serve a beginner’s guide to initiate the crop improvement programs as well as giving technical insight to the expert to plan the research strategically to tackle even multigenic traits in crop plants.

Author(s):  
Nathaniel Schleif ◽  
Shawn M. Kaeppler ◽  
Heidi F. Kaeppler

AbstractPlant breeding relies on the presence of genetic variation, which is generated by a random process of mutagenesis that acts on existing gene pools. This variation is then recombined into new forms at frequencies impacted by the local euchromatin and heterochromatin environment. The result is a genetic lottery where plant breeders face increasingly low odds of generating a “winning” plant genotype. Genome editing tools enable targeted manipulation of the genome, providing a means to increase genetic variation and enhancing the chances for plant breeding success. Editing can be applied in a targeted way, where known genetic variation that improves performance can be directly brought into lines of interest through either deletion or insertion. This empowers approaches that are traditionally difficult such as novel domestication and introgression of wild accessions into a germplasm pool. Furthermore, broader editing-mediated approaches such as recombination enhancement and targeted random mutagenesis bring novel ways of variation creation to the plant breeding toolbox. Continued development and application of plant genome editing tools will be needed to aid in meeting critical global crop improvement needs.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1386 ◽  
Author(s):  
Sanskriti Vats ◽  
Surbhi Kumawat ◽  
Virender Kumar ◽  
Gunvant B. Patil ◽  
Trupti Joshi ◽  
...  

Genome-editing, a recent technological advancement in the field of life sciences, is one of the great examples of techniques used to explore the understanding of the biological phenomenon. Besides having different site-directed nucleases for genome editing over a decade ago, the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) based genome editing approach has become a choice of technique due to its simplicity, ease of access, cost, and flexibility. In the present review, several CRISPR/Cas based approaches have been discussed, considering recent advances and challenges to implicate those in the crop improvement programs. Successful examples where CRISPR/Cas approach has been used to improve the biotic and abiotic stress tolerance, and traits related to yield and plant architecture have been discussed. The review highlights the challenges to implement the genome editing in polyploid crop plants like wheat, canola, and sugarcane. Challenges for plants difficult to transform and germline-specific gene expression have been discussed. We have also discussed the notable progress with multi-target editing approaches based on polycistronic tRNA processing, Csy4 endoribonuclease, intron processing, and Drosha ribonuclease. Potential to edit multiple targets simultaneously makes it possible to take up more challenging tasks required to engineer desired crop plants. Similarly, advances like precision gene editing, promoter bashing, and methylome-editing will also be discussed. The present review also provides a catalog of available computational tools and servers facilitating designing of guide-RNA targets, construct designs, and data analysis. The information provided here will be useful for the efficient exploration of technological advances in genome editing field for the crop improvement programs.


2021 ◽  
Vol 22 (11) ◽  
pp. 5585
Author(s):  
Sajid Fiaz ◽  
Sunny Ahmar ◽  
Sajjad Saeed ◽  
Aamir Riaz ◽  
Freddy Mora-Poblete ◽  
...  

A world with zero hunger is possible only through a sustainable increase in food production and distribution and the elimination of poverty. Scientific, logistical, and humanitarian approaches must be employed simultaneously to ensure food security, starting with farmers and breeders and extending to policy makers and governments. The current agricultural production system is facing the challenge of sustainably increasing grain quality and yield and enhancing resistance to biotic and abiotic stress under the intensifying pressure of climate change. Under present circumstances, conventional breeding techniques are not sufficient. Innovation in plant breeding is critical in managing agricultural challenges and achieving sustainable crop production. Novel plant breeding techniques, involving a series of developments from genome editing techniques to speed breeding and the integration of omics technology, offer relevant, versatile, cost-effective, and less time-consuming ways of achieving precision in plant breeding. Opportunities to edit agriculturally significant genes now exist as a result of new genome editing techniques. These range from random (physical and chemical mutagens) to non-random meganucleases (MegaN), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein system 9 (CRISPR/Cas9), the CRISPR system from Prevotella and Francisella1 (Cpf1), base editing (BE), and prime editing (PE). Genome editing techniques that promote crop improvement through hybrid seed production, induced apomixis, and resistance to biotic and abiotic stress are prioritized when selecting for genetic gain in a restricted timeframe. The novel CRISPR-associated protein system 9 variants, namely BE and PE, can generate transgene-free plants with more frequency and are therefore being used for knocking out of genes of interest. We provide a comprehensive review of the evolution of genome editing technologies, especially the application of the third-generation genome editing technologies to achieve various plant breeding objectives within the regulatory regimes adopted by various countries. Future development and the optimization of forward and reverse genetics to achieve food security are evaluated.


Traditional plant breeding depends on spontaneous and induced mutations available in the crop plants. Such mutations are rare and occur randomly. By contrast, molecular breeding and genome editing are advanced breeding techniques that can enhance the selection process and produce precisely targeted modifications in any crop. Identification of molecular markers, based on SSRs and SNPs, and the availability of high-throughput (HTP) genotyping platforms have accelerated the process of generating dense genetic linkage maps and thereby enhanced application of marker-assisted breeding for crop improvement. Advanced molecular biology techniques that facilitate precise, efficient, and targeted modifications at genomic loci are termed as “genome editing.” The genome editing tools include “zinc-finger nucleases (ZNFs),” “transcription activator-like effector nucleases (TALENs),” oligonucleotide-directed mutagenesis (ODM), and “clustered regularly interspersed short palindromic repeats (CRISPER/Cas) system,” which can be used for targeted gene editing. Concepts of molecular plant breeding and genome editing systems are presented in this chapter.


1997 ◽  
Vol 33 (01) ◽  
pp. 15-33 ◽  
Author(s):  
B. P. Forster ◽  
M. A. Lee ◽  
U. Lundqvist ◽  
S. Millam ◽  
K. Vamling ◽  
...  

Genetic engineering of crop plants has been in progress since the dawn of agriculture, about 10 000 years ago. For millennia the genetic make-up of our crop plants has been changed by mankind's selection of naturally occurring variants. As the trade routes were developed, novel plant types were introduced into new environments and provided more variation from which to choose. At the end of the nineteenth century an understanding of the laws of heredity was gained and plant breeding protocols were devised whereby selection became accompanied by deliberate crossing. As the knowledge of the genetic structure of crop plants improved, new ways of manipulation were invented and exploited. Indeed plant breeding became a testing bed for new ideas in genetics. For the plant breeder the techniques which were most widely employed in the past were those which aided breeding, for example techniques which speeded up the production of new varieties, but still used traditional routes of crossing and selection. This was a transitional phase between plant breeding as an art and plant breeding as a science.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sunny Ahmar ◽  
Tahir Mahmood ◽  
Sajid Fiaz ◽  
Freddy Mora-Poblete ◽  
Muhammad Sohaib Shafique ◽  
...  

Agriculture is an important source of human food. However, current agricultural practices need modernizing and strengthening to fulfill the increasing food requirements of the growing worldwide population. Genome editing (GE) technology has been used to produce plants with improved yields and nutritional value as well as with higher resilience to herbicides, insects, and diseases. Several GE tools have been developed recently, including clustered regularly interspaced short palindromic repeats (CRISPR) with nucleases, a customizable and successful method. The main steps of the GE process involve introducing transgenes or CRISPR into plants via specific gene delivery systems. However, GE tools have certain limitations, including time-consuming and complicated protocols, potential tissue damage, DNA incorporation in the host genome, and low transformation efficiency. To overcome these issues, nanotechnology has emerged as a groundbreaking and modern technique. Nanoparticle-mediated gene delivery is superior to conventional biomolecular approaches because it enhances the transformation efficiency for both temporal (transient) and permanent (stable) genetic modifications in various plant species. However, with the discoveries of various advanced technologies, certain challenges in developing a short-term breeding strategy in plants remain. Thus, in this review, nanobased delivery systems and plant genetic engineering challenges are discussed in detail. Moreover, we have suggested an effective method to hasten crop improvement programs by combining current technologies, such as speed breeding and CRISPR/Cas, with nanotechnology. The overall aim of this review is to provide a detailed overview of nanotechnology-based CRISPR techniques for plant transformation and suggest applications for possible crop enhancement.


2019 ◽  
Vol 20 (16) ◽  
pp. 4045 ◽  
Author(s):  
Ali Razzaq ◽  
Fozia Saleem ◽  
Mehak Kanwal ◽  
Ghulam Mustafa ◽  
Sumaira Yousaf ◽  
...  

Increasing agricultural productivity via modern breeding strategies is of prime interest to attain global food security. An array of biotic and abiotic stressors affect productivity as well as the quality of crop plants, and it is a primary need to develop crops with improved adaptability, high productivity, and resilience against these biotic/abiotic stressors. Conventional approaches to genetic engineering involve tedious procedures. State-of-the-art OMICS approaches reinforced with next-generation sequencing and the latest developments in genome editing tools have paved the way for targeted mutagenesis, opening new horizons for precise genome engineering. Various genome editing tools such as transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and meganucleases (MNs) have enabled plant scientists to manipulate desired genes in crop plants. However, these approaches are expensive and laborious involving complex procedures for successful editing. Conversely, CRISPR/Cas9 is an entrancing, easy-to-design, cost-effective, and versatile tool for precise and efficient plant genome editing. In recent years, the CRISPR/Cas9 system has emerged as a powerful tool for targeted mutagenesis, including single base substitution, multiplex gene editing, gene knockouts, and regulation of gene transcription in plants. Thus, CRISPR/Cas9-based genome editing has demonstrated great potential for crop improvement but regulation of genome-edited crops is still in its infancy. Here, we extensively reviewed the availability of CRISPR/Cas9 genome editing tools for plant biotechnologists to target desired genes and its vast applications in crop breeding research.


2021 ◽  
Vol 22 (2) ◽  
pp. 682
Author(s):  
Hymavathi Salava ◽  
Sravankumar Thula ◽  
Vijee Mohan ◽  
Rahul Kumar ◽  
Fatemeh Maghuly

Plants regularly face the changing climatic conditions that cause biotic and abiotic stress responses. The abiotic stresses are the primary constraints affecting crop yield and nutritional quality in many crop plants. The advances in genome sequencing and high-throughput approaches have enabled the researchers to use genome editing tools for the functional characterization of many genes useful for crop improvement. The present review focuses on the genome editing tools for improving many traits such as disease resistance, abiotic stress tolerance, yield, quality, and nutritional aspects of tomato. Many candidate genes conferring tolerance to abiotic stresses such as heat, cold, drought, and salinity stress have been successfully manipulated by gene modification and editing techniques such as RNA interference, insertional mutagenesis, and clustered regularly interspaced short palindromic repeat (CRISPR/Cas9). In this regard, the genome editing tools such as CRISPR/Cas9, which is a fast and efficient technology that can be exploited to explore the genetic resources for the improvement of tomato and other crop plants in terms of stress tolerance and nutritional quality. The review presents examples of gene editing responsible for conferring both biotic and abiotic stresses in tomato simultaneously. The literature on using this powerful technology to improve fruit quality, yield, and nutritional aspects in tomato is highlighted. Finally, the prospects and challenges of genome editing, public and political acceptance in tomato are discussed.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 560B-560
Author(s):  
David A. Somers

Genetic engineering offers numerous potentially useful genetic manipulations for the improvement of horticultural crops. Nevertheless, there are several impediments to the efficient integration of genetic engineering into plant improvement programs. The ability to regenerate plants from tissue cultures and, therefore, to genetically engineer most plant species is limited to specific genotypes. This may constrain introduction of genetically engineered traits into crops that have complex genetics, are highly heterozygous, or are propagated by asexual reproduction. Even in crops that are self-compatible, diploids, genotypic specificity of the transformation process often necessitates backcrossing for transfer of genetically engineered traits into elite lines and to reduce problems associated with tissue culture-induced genetic variation. This limits progress in improving other traits compared to other breeding strategies. Other challenges to applying genetic engineering exist. The major genomics initiatives currently underway for gene discovery from a broad range of organisms will provide plant improvers access to most genes. Yet there remains a dearth in tissue-specific, developmentally timed, and environmentally responsive promoters for appropriate expression of introduced genes (transgenes). Furthermore, transgene expression is not as controllable as desired due to transgene silencing. Transgene integration is a random process and further refinements of targeted DNA integration will likely enhance the stability of expression of transgenic traits. The availability of other tools, such as selectable marker genes, will become limiting as multiple transgenic traits are combined within a species. In addition to technical problems, there likely will be problems of access to proprietary technology and testing to meet federal regulations and public acceptance. While these various challenges and limitations currently may constrain progress in application of genetic engineering to horticultural crop improvement, it is foreseeable that with further improvements of genetic engineering technology and development of the appropriate molecular tools, genetic engineering will become a component of most plant improvement programs.


Sign in / Sign up

Export Citation Format

Share Document