Ultrasound-triggered immunotherapy for cancer treatment: An update

Author(s):  
Debasmita Mukhopadhyay ◽  
Amal Ahmed ◽  
Catherine Sano ◽  
Nahid Awad ◽  
Nour AlSawaftah ◽  
...  

: Over the past few decades, immunotherapy has emerged as a promising therapeutic approach to treat some types of cancer. Moreover, antibody-based cancer therapies can trigger apoptosis and cell growth inhibition to induce immune cell destruction of target cells through antibody-dependent cellular cytotoxicity (ADCC). Nevertheless, immunotherapeutic efficiency is often restricted to either deficient delivery or low accumulation of therapeutic molecules at the tumor site. Therefore, exposing immunoliposomes to ultrasound can effectively improve drug accessibility by enhancing cell membrane permeability and drug release. This review summarizes existing traditional cancer treatments and their limitations, emphasizing the recent advancements in ultrasound-triggered immunotherapy.

2020 ◽  
Vol 26 (7) ◽  
pp. 764-771
Author(s):  
Phuong H.L. Tran ◽  
Wei Duan ◽  
Beom-Jin Lee ◽  
Thao T.D. Tran

: Extracellular vesicles have an excellent ability to transfer their contents to cells. Extracellular vesicles can also be engineered to deliver therapeutic molecules to target cells. Although a number of studies have exploited synthesized nanoparticles in the treatment of neurological disease in the past few years, extracellular vesicles have been investigated and shown tremendous promise for clinical applications because they are safe and have strong targeting specificity. Different types of extracellular vesicles have been studied and modified for delivering therapeutic factors in neurological disease, including extracellular vesicles loaded with natural therapeutic factors and therapeutic molecules. In this review, we discuss delivery systems using extracellular vesicles containing molecules of interest and then focus on main strategies used for EV loading and surface modification. Discussing these important issues will support and facilitate the design and development of promising techniques and products for neurological therapy.


2019 ◽  
Vol 26 (8) ◽  
pp. 1351-1365 ◽  
Author(s):  
Zhentao Huang ◽  
Qingxin Yao ◽  
Simin Wei ◽  
Jiali Chen ◽  
Yuan Gao

Precision medicine is in an urgent need for public healthcare. Among the past several decades, the flourishing development in nanotechnology significantly advances the realization of precision nanomedicine. Comparing to well-documented nanoparticlebased strategy, in this review, we focus on the strategy using enzyme instructed selfassembly (EISA) in biological milieu for theranostics purpose. In principle, the design of small molecules for EISA requires two aspects: (1) the substrate of enzyme of interest; and (2) self-assembly potency after enzymatic conversion. This strategy has shown its irreplaceable advantages in nanomedicne, specifically for cancer treatments and Vaccine Adjuvants. Interestingly, all the reported examples rely on only one kind of enzymehydrolase. Therefore, we envision that the application of EISA strategy just begins and will lead to a new paradigm in nanomedicine.


2020 ◽  
Vol 26 ◽  
Author(s):  
Phuong H.L. Tran ◽  
Beom-Jin Lee ◽  
Thao T.D. Tran

: Aspirin has emerged as a promising intervention in cancer in the past decade. However, there are existing controversies regarding the anticancer properties of aspirin as its mechanism of action has not been clearly defined. In addition, the risk of bleeding in the gastrointestinal tract from aspirin is another consideration that requires medical and pharmaceutical scientists to work together to develop more potent and safe aspirin therapy in cancer. This review presents the most recent studies of aspirin with regard to its role in cancer prevention and treatment demonstrated by highlighted clinical trials, mechanisms of action as well as approaches to develop aspirin therapy best beneficial to cancer patients. Hence, this review provides readers with an overview of aspirin research in cancer that covers not only the unique features of aspirin, which differentiates aspirin from other non-steroidal anti-inflammatory drugs (NSAIDs), but also strategies that can be used in the development of drug delivery systems carrying aspirin for cancer management. These studies convey optimistic messages on continuing efforts of scientist on the way of developing an effective therapy for even patients with a low response to current cancer treatments.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1343
Author(s):  
Gagan Chhabra ◽  
Chandra K. Singh ◽  
Deeba Amiri ◽  
Neha Akula ◽  
Nihal Ahmad

Immunomodulation of the tumor microenvironment is emerging as an important area of research for the treatment of cancer patients. Several synthetic and natural agents are being investigated for their ability to enhance the immunogenic responses of immune cells present in the tumor microenvironment to impede tumor cell growth and dissemination. Among them, resveratrol, a stilbenoid found in red grapes and many other natural sources, has been studied extensively. Importantly, resveratrol has been shown to possess activity against various human diseases, including cancer. Mechanistically, resveratrol has been shown to regulate an array of signaling pathways and processes involving oxidative stress, inflammation, apoptosis, and several anticancer effects. Furthermore, recent research suggests that resveratrol can regulate various cellular signaling events including immune cell regulation, cytokines/chemokines secretion, and the expression of several other immune-related genes. In this review, we have summarized recent findings on resveratrol’s effects on immune regulatory cells and associated signaling in various cancer types. Numerous immunomodulatory effects of resveratrol suggest it may be useful in combination with other cancer therapies including immunotherapy for effective cancer management.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 73
Author(s):  
Bilal El Waly ◽  
Vincent Escarrat ◽  
Jimena Perez-Sanchez ◽  
Jaspreet Kaur ◽  
Florence Pelletier ◽  
...  

The extension of the lesion following spinal cord injury (SCI) poses a major challenge for regenerating axons, which must grow across several centimetres of damaged tissue in the absence of ordered guidance cues. Biofunctionalized electroconducting microfibres (MFs) that provide biochemical signals, as well as electrical and mechanical cues, offer a promising therapeutic approach to help axons overcome this blind journey. We used poly(3,4-ethylenedioxythiophene)-coated carbon MFs functionalized with cell adhesion molecules and growth factors to bridge the spinal cord after a partial unilateral dorsal quadrant lesion (PUDQL) in mice and followed cellular responses by intravital two-photon (2P) imaging through a spinal glass window. Thy1-CFP//LysM-EGFP//CD11c-EYFP triple transgenic reporter animals allowed real time simultaneous monitoring of axons, myeloid cells and microglial cells in the vicinity of the implanted MFs. MF biocompatibility was confirmed by the absence of inflammatory storm after implantation. We found that the sprouting of sensory axons was significantly accelerated by the implantation of functionalized MFs after PUDQL. Their implantation produced better axon alignment compared to random and misrouted axon regeneration that occurred in the absence of MF, with a most striking effect occurring two months after injury. Importantly, we observed differences in the intensity and composition of the innate immune response in comparison to PUDQL-only animals. A significant decrease of immune cell density was found in MF-implanted mice one month after lesion along with a higher ratio of monocyte-derived dendritic cells whose differentiation was accelerated. Therefore, functionalized carbon MFs promote the beneficial immune responses required for neural tissue repair, providing an encouraging strategy for SCI management.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 113 ◽  
Author(s):  
Stephanie Maia Acuña ◽  
Lucile Maria Floeter-Winter ◽  
Sandra Marcia Muxel

An inflammatory response is essential for combating invading pathogens. Several effector components, as well as immune cell populations, are involved in mounting an immune response, thereby destroying pathogenic organisms such as bacteria, fungi, viruses, and parasites. In the past decade, microRNAs (miRNAs), a group of noncoding small RNAs, have emerged as functionally significant regulatory molecules with the significant capability of fine-tuning biological processes. The important role of miRNAs in inflammation and immune responses is highlighted by studies in which the regulation of miRNAs in the host was shown to be related to infectious diseases and associated with the eradication or susceptibility of the infection. Here, we review the biological aspects of microRNAs, focusing on their roles as regulators of gene expression during pathogen–host interactions and their implications in the immune response against Leishmania, Trypanosoma, Toxoplasma, and Plasmodium infectious diseases.


2021 ◽  
Vol 22 (3) ◽  
pp. 1395
Author(s):  
Luca Mattiello ◽  
Giulia Pucci ◽  
Francesco Marchetti ◽  
Marc Diederich ◽  
Stefania Gonfloni

Cancer treatments can often adversely affect the quality of life of young women. One of the most relevant negative impacts is the loss of fertility. Cyclophosphamide is one of the most detrimental chemotherapeutic drugs for the ovary. Cyclophosphamide may induce the destruction of dormant follicles while promoting follicle activation and growth. Herein, we demonstrate the in vivo protective effect of the allosteric Bcr-Abl tyrosine kinase inhibitor Asciminib on signaling pathways activated by cyclophosphamide in mouse ovaries. We also provide evidence that Asciminib does not interfere with the cytotoxic effect of cyclophosphamide in Michigan Cancer Foundation (MCF)7 breast cancer cells. Our data indicate that concomitant administration of Asciminib mitigates the cyclophosphamide-induced ovarian reserve loss without affecting the anticancer potential of cyclophosphamide. Taken together, these observations are relevant for the development of effective ferto-protective adjuvants to preserve the ovarian reserve from the damaging effects of cancer therapies.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Tina Briolay ◽  
Tacien Petithomme ◽  
Morgane Fouet ◽  
Nelly Nguyen-Pham ◽  
Christophe Blanquart ◽  
...  

Abstract Background As a complement to the clinical development of new anticancer molecules, innovations in therapeutic vectorization aim at solving issues related to tumor specificity and associated toxicities. Nanomedicine is a rapidly evolving field that offers various solutions to increase clinical efficacy and safety. Main Here are presented the recent advances for different types of nanovectors of chemical and biological nature, to identify the best suited for translational research projects. These nanovectors include different types of chemically engineered nanoparticles that now come in many different flavors of ‘smart’ drug delivery systems. Alternatives with enhanced biocompatibility and a better adaptability to new types of therapeutic molecules are the cell-derived extracellular vesicles and micro-organism-derived oncolytic viruses, virus-like particles and bacterial minicells. In the first part of the review, we describe their main physical, chemical and biological properties and their potential for personalized modifications. The second part focuses on presenting the recent literature on the use of the different families of nanovectors to deliver anticancer molecules for chemotherapy, radiotherapy, nucleic acid-based therapy, modulation of the tumor microenvironment and immunotherapy. Conclusion This review will help the readers to better appreciate the complexity of available nanovectors and to identify the most fitting “type” for efficient and specific delivery of diverse anticancer therapies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sebastian R. Nielsen ◽  
Jan E. Strøbech ◽  
Edward R. Horton ◽  
Rene Jackstadt ◽  
Anu Laitala ◽  
...  

AbstractPancreatic ductal adenocarcinoma (PDAC) patients have a 5-year survival rate of only 8% largely due to late diagnosis and insufficient therapeutic options. Neutrophils are among the most abundant immune cell type within the PDAC tumor microenvironment (TME), and are associated with a poor clinical prognosis. However, despite recent advances in understanding neutrophil biology in cancer, therapies targeting tumor-associated neutrophils are lacking. Here, we demonstrate, using pre-clinical mouse models of PDAC, that lorlatinib attenuates PDAC progression by suppressing neutrophil development and mobilization, and by modulating tumor-promoting neutrophil functions within the TME. When combined, lorlatinib also improves the response to anti-PD-1 blockade resulting in more activated CD8 + T cells in PDAC tumors. In summary, this study identifies an effect of lorlatinib in modulating tumor-associated neutrophils, and demonstrates the potential of lorlatinib to treat PDAC.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 889
Author(s):  
Thomas D. Gilmore

Transcription factor NF-κB has been extensively studied for its varied roles in cancer development since its initial characterization as a potent retroviral oncogene. It is now clear that NF-κB also plays a major role in a large variety of human cancers, including especially ones of immune cell origin. NF-κB is generally constitutively or aberrantly activated in human cancers where it is involved. These activations can occur due to mutations in the NF-κB transcription factors themselves, in upstream regulators of NF-κB, or in pathways that impact NF-κB. In addition, NF-κB can be activated by tumor-assisting processes such as inflammation, stromal effects, and genetic or epigenetic changes in chromatin. Aberrant NF-κB activity can affect many tumor-associated processes, including cell survival, cell cycle progression, inflammation, metastasis, angiogenesis, and regulatory T cell function. As such, inhibition of NF-κB has often been investigated as an anticancer strategy. Nevertheless, with a few exceptions, NF-κB inhibition has had limited success in human cancer treatment. This review covers general themes that have emerged regarding the biological roles and mechanisms by which NF-κB contributes to human cancers and new thoughts on how NF-κB may be targeted for cancer prognosis or therapy.


Sign in / Sign up

Export Citation Format

Share Document