Biological Degradation of Keratin by Microbial Keratinase for Effective Waste Management and Potent Industrial Applications

Author(s):  
Latafat Chaudhary ◽  
Mohammad Haris Siddiqui ◽  
Archana Vimal ◽  
Prachi Bhargava

: Enzymes are the biocatalysts synthesized by living organisms having high specificity, catalytic activity, and a broad range of applicability. One such biotechnologicaly relevant enzyme is keratinase with various industrial application that captures a significant place in the enzyme market. It belongs to the proteolytic enzyme group that cleaves the highly stable and fibrous protein, keratin through hydrolysis. Keratins are hard- corrupting sinewy proteins insoluble in natural solvents and water. It is frequently aggregated in nature and expressively present in the plumes, hair, nail, horn, skins, feet, etc. The maximum range of microorganisms, such as bacteria, fungi, and actinomycetes have been accounted for producing keratinases with significant biotechnological applications. Successful application of this group of enzymes have been seen in various industries such as farming, laundry detergent, cosmetics, animal feed, pharmaceutical, leather, and textile. Moreover they have found remarkable usability in environmentally friendly waste management also. This paper focuses on the structure, sources, and various applications of this industrially important enzyme.

2013 ◽  
Vol 8 (2) ◽  
pp. 159-178 ◽  

Atrazine, a chlorinated s-triazine group of herbicide is one of the most widely used pesticides in the World. Due to its extensive use, long half-life and various toxic properties, it has very high environmental significance. Up to 22 mg l-1 of atrazine was found in ground water whereas permissible limit of atrazine is in ppb level in drinking water. As per Indian standard there should not be any pesticide present in drinking water. Among many other treatment processes available, Incineration, adsorption, chemical treatment, phytoremediation and biodegradation are the most commonly used ones. Biological degradation of atrazine depends upon various factors like the operating environment, external carbon and nitrogen sources, carbon/ nitrogen ratio (C/N), water content and the bacterial strain. Although, general atrazine degradation pathways are available, the specific pathways in specific conditions are not yet clearly defined. In this paper extensive review has been made on the occurrence of atrazine in surface and ground water bodies, probable sources and causes of its occurrence in water environment, the toxicity of atrazine on various living organisms and its removal by biological processes.


2020 ◽  
Vol 27 (5) ◽  
pp. 400-410
Author(s):  
Valentina De Luca ◽  
Luigi Mandrich

: Enzymes are among the most studied biological molecules because better understanding enzymes structure and activity will shed more light on their biological processes and regulation; from a biotechnological point of view there are many examples of enzymes used with the aim to obtain new products and/or to make industrial processes less invasive towards the environment. Enzymes are known for their high specificity in the recognition of a substrate but considering the particular features of an increasing number of enzymes this is not completely true, in fact, many enzymes are active on different substrates: this ability is called enzyme promiscuity. Usually, promiscuous activities have significantly lower kinetic parameters than to that of primary activity, but they have a crucial role in gene evolution. It is accepted that gene duplication followed by sequence divergence is considered a key evolutionary mechanism to generate new enzyme functions. In this way, promiscuous activities are the starting point to increase a secondary activity in the main activity and then get a new enzyme. The primary activity can be lost or reduced to a promiscuous activity. In this review we describe the differences between substrate and enzyme promiscuity, and its rule in gene evolution. From a practical point of view the knowledge of promiscuity can facilitate the in vitro progress of proteins engineering, both for biomedical and industrial applications. In particular, we report cases regarding esterases, phosphotriesterases and cytochrome P450.


Author(s):  
João Marcos Pereira Galúcio ◽  
Sorrel Godinho Barbosa de Souza ◽  
Arthur Abinader Vasconcelos ◽  
Alan Kelbis Oliveira Lima ◽  
Kauê Santana da Costa ◽  
...  

: Nanotechnology is a cutting-edge area with numerous industrial applications. Nanoparticles are structures that have dimensions ranging from 1–100 nm which exhibit significantly different mechanical, optical, electrical, and chemical properties when compared with their larger counterparts. Synthetic routes that use natural sources, such as plant extracts, honey, and microorganisms are environmentally friendly and low-cost methods that can be used to obtain nanoparticles. These methods of synthesis generate products that are more stable and less toxic than those obtained using conventional methods. Nanoparticles formed by titanium dioxide, zinc oxide, silver, gold, and copper, as well as cellulose nanocrystals are among the nanostructures obtained by green synthesis that have shown interesting applications in several technological industries. Several analytical techniques have also been used to analyze the size, morphology, hydrodynamics, diameter, and chemical functional groups involved in the stabilization of the nanoparticles as well as to quantify and evaluate their formation. Despite their pharmaceutical, biotechnological, cosmetic, and food applications, studies have detected their harmful effects on human health and the environment; and thus, caution must be taken in uses involving living organisms. The present review aims to present an overview of the applications, the structural properties, and the green synthesis methods that are used to obtain nanoparticles, and special attention is given to those obtained from metal ions. The review also presents the analytical methods used to analyze, quantify, and characterize these nanostructures.


2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Restu Auliani ◽  
Bella Elsaday ◽  
Desy Ari Apsari ◽  
Helfi Nolia

The cultivation of maggot Black Soldier Fly (BSF) is a bioconversion technology of organic matter that can be one solution to the problem of organic waste. This study aims to examine aspects of organic waste management through BSF Medan maggot cultivation, including operational technical, financing, institutional, regulatory and community and government participation aspects. This research is a descriptive observational study with an exploratory study approach using the interview method. Descriptive and quantitative data processing and analysis. Based on operational technical aspects, maggot cultivation has succeeded in converting organic waste into a source of animal feed protein and reducing the amount of organic waste. The amount of organic waste that is managed is 90kg/day with an effectiveness of 0.013% the total domestic waste in Medan. The financing and institutional aspects of waste management are managed in an organized manner through a cooperative body, namely the Primary Waste Management Cooperative (PKPS) Medan. The regulatory aspect that is used as reference is Medan Mayor Regulation No. 26 of 2019. Aspects of community participation directly from members of the cooperative and the Laucih wholesale market trader in Medan City. This bioconversion technology is able to overcome the problem of waste in an effort to reduce organic waste.


Author(s):  
Kulyash Meiramkulova ◽  
Gulmira Adilbektegi ◽  
Galym Baituk ◽  
Aigul Kurmanbayeva ◽  
Anuarbek Kakabayev ◽  
...  

Waste recovery is an important aspect towards human and environmental health protection. Unfortunately, proper food waste management is among the serious challenges in the field of solid waste management worldwide. Therefore, it is of great importance to conduct studies towards achieving efficient and cost-effective approaches for food waste management. This study investigated the potential of recovering food waste through maggots’ production as animal feed. The influence of fly attractant application on maggot production was also investigated. The study also investigated the potential of maggot production for waste recovery and reduction. Four different types of food waste (starch food leftovers, rotten bananas and peels, rotten pineapple and peels, and rotten oranges) were used in the investigation process. From the results, it was observed that the application of fly attractants had a significant effect on the production of maggots as determined by the weights after harvesting. Average weight of 94 g/kg of maggot was achieved from banana materials with an application of fly attractant during the 8th day of the cultivation; which is equivalent to a 32.4% increase from the same day when the material was cultured without applying fly attractant. Also, from the starch materials, about 77 g/kg of maggot weight was achieved; which is a 54.6% increase from the same day and the same material but without application of fly attractant. Moreover, the relative dry weight reduction in the trials varied from 52.5% to 82.4%.


Agronomy ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 151
Author(s):  
Cassyo de Araujo Rufino ◽  
Jucilayne Fernandes-Vieira ◽  
Jesús Martín-Gil ◽  
José Abreu Júnior ◽  
Lizandro Tavares ◽  
...  

Maize is an important food staple in many countries, and is useful in animal feed and many industrial applications. Its productivity is highly sensitive to drought stress, which may occur at any period during its growth cycle. The objective of this work was to compare the water stress influence on the performance of different maize genotypes in critical vegetative stages. Four genotypes of maize (namely a single-cross hybrid (AG 9045), a double-cross hybrid (AG 9011), a triple-cross hybrid (AG 5011), and a variety (AL Bandeirante)) were subjected to a 10-day period without irrigation in the vegetative stages that determine the number of kernel rows and the plant’s ability to take up nutrients and water (V4, V6 and V8). The impact of low water availability was assessed by analyzing plant height, height of the first ear insertion, stem diameter, yield per plant, and number of rows per ear, evincing that the yield per plant was the most sensitive parameter in all the stages. With regard to the influence of the genotype, the single-cross hybrid was demonstrated to be the most resilient to water shortage.


Author(s):  
Amritha Govindrao Kulkarni ◽  
Ankala Bassappa Vedamurthy

Cellulose is the most abundant polymer in plants and the microbial conversion of cellulose is a subject of active research. Currently, cellulase is commonly used in many industrial applications, especially in animal feed, textile, waste water, brewing and wine making. A challenging strategy for the efficient utilization of this renewable resource is to use it as a base material for the production of desired metabolites. This chapter therefore focuses on exploring the cellulase producing bacteria and optimizing the parameters for the enzyme cellulase under varied conditions. Cellulolytic bacteria can be exploited for cellulase production which serves wide applications in industries, pharmaceuticals and further, use of these CDB as bio-inoculants can be incorporated to enhance organic matter decomposition in soil to increase soil fertility and to minimize the fertilizer application. It finds wide applications in reducing the environmental pollution and promote sustainable agriculture.


Author(s):  
Manish Soni ◽  
Charuta Mathur ◽  
Anjali Soni ◽  
Manoj Kumar Solanki ◽  
Brijendra Kumar Kashyap ◽  
...  

Foods ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 237 ◽  
Author(s):  
Correddu ◽  
Maldini ◽  
Addis ◽  
Petretto ◽  
Palomba ◽  
...  

The fatty acid (FA), polyphenol content and evaluation of the antioxidant capacity of exhausted Myrtus communis berries (EMB) resulting from the production of myrtle liqueur were assessed. All parts of the exhausted berries exhibited high concentrations of carbohydrates, proteins, lipids and phenolic compounds. The lipid fraction contained a high amount of poly unsaturated fatty acids (PUFA), mainly represented by linoleic acid (>70%). Of the phenolic acids evaluated by liquid chromatography/mass spectrometry, ellagic acid was the most predominant (>50%), followed by gallic and quinic acids. Quercetin and quercetin3-O-rhamnoside were the most abundant flavonoids. The seed extracts showed a higher antioxidant potential than the pericarp extracts; the same trend was observed for total phenolic compounds evaluated by spectrophotometric assay. The overall high content of bioactive compounds and the high antioxidant potential of this byproduct sustain its suitability for a number of industrial applications, such as a food ingredient in novel foods, an additive in cosmetic formulations or a component of animal feed formulations.


Author(s):  
S.N. Rindhe ◽  
Manish Kumar Chatli ◽  
R.V. Wagh ◽  
Amanpreet Kaur ◽  
Nitin Mehta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document