The Comprehensive Neural Mechanism of Oxytocin in Analgesia

2021 ◽  
Vol 19 ◽  
Author(s):  
Liu-Nan Yang ◽  
Kai Chen ◽  
Xiao-Ping Yin ◽  
Dan Liu ◽  
Ling-Qiang Zhu

: Oxytocin (OXT) is a nine amino acid neuropeptide hormone that has become one of the most intensively studied molecules in the past few decades. The vast majority of OXT is synthesized in the periventricular nucleus and supraoptic nucleus of the hypothalamus, and a few are synthesized in some peripheral organs (such as the uterus, ovaries, adrenal glands, thymus, pancreas, etc.) OXT modulates a series of physiological processes, including lactation, parturition, as well as some social behaviors. In addition, more and more attention has recently been focused on the analgesic effects of oxytocin. It has been reported that OXT can relieve tension and pain without other adverse effects. However, the critical role and detailed mechanism of OXT in analgesia remain unclear. Here, this review aims to summarize the mechanism of OXT in analgesia and some ideas about the mechanism.

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7128
Author(s):  
Ying Tu ◽  
Xuefeng Wang

Cell adhesive force, exerting on the local matrix or neighboring cells, plays a critical role in regulating many cell functions and physiological processes. In the past four decades, significant efforts have been dedicated to cell adhesive force detection, visualization and quantification. A recent important methodological advancement in cell adhesive force visualization is to adopt force-to-fluorescence conversion instead of force-to-substrate strain conversion, thus greatly improving the sensitivity and resolution of force imaging. This review summarizes the recent development of force imaging techniques (collectively termed as cell adhesive force microscopy or CAFM here), with a particular focus on the improvement of CAFM’s spatial resolution and the biomaterial choices for constructing the tension sensors used in force visualization. This review also highlights the importance of DNA-based tension sensors in cell adhesive force imaging and the recent breakthrough in the development of super-resolution CAFM.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Chen Wang ◽  
Jiawei Zhang ◽  
Jie Yin ◽  
Yichao Gan ◽  
Senlin Xu ◽  
...  

AbstractThe Myc proto-oncogene family consists of three members, C-MYC, MYCN, and MYCL, which encodes the transcription factor c-Myc (hereafter Myc), N-Myc, and L-Myc, respectively. Myc protein orchestrates diverse physiological processes, including cell proliferation, differentiation, survival, and apoptosis. Myc modulates about 15% of the global transcriptome, and its deregulation rewires the cellular signaling modules inside tumor cells, thereby acquiring selective advantages. The deregulation of Myc occurs in >70% of human cancers, and is related to poor prognosis; hence, hyperactivated Myc oncoprotein has been proposed as an ideal drug target for decades. Nevertheless, no specific drug is currently available to directly target Myc, mainly because of its “undruggable” properties: lack of enzymatic pocket for conventional small molecules to bind; inaccessibility for antibody due to the predominant nucleus localization of Myc. Although the topic of targeting Myc has actively been reviewed in the past decades, exciting new progresses in this field keep emerging. In this review, after a comprehensive summarization of valuable sources for potential druggable targets of Myc-driven cancer, we also peer into the promising future of utilizing macropinocytosis to deliver peptides like Omomyc or antibody agents to intracellular compartment for cancer treatment.


2021 ◽  
Vol 14 (6) ◽  
pp. 587
Author(s):  
Zhaoyu Chen ◽  
Qinghua Cui ◽  
Michael Caffrey ◽  
Lijun Rong ◽  
Ruikun Du

Hemagglutinin (HA) plays a critical role during influenza virus receptor binding and subsequent membrane fusion process, thus HA has become a promising drug target. For the past several decades, we and other researchers have discovered a series of HA inhibitors mainly targeting its fusion machinery. In this review, we summarize the advances in HA-targeted development of small molecule inhibitors. Moreover, we discuss the structural basis and mode of action of these inhibitors, and speculate upon future directions toward more potent inhibitors of membrane fusion and potential anti-influenza drugs.


2021 ◽  
Vol 22 (15) ◽  
pp. 8298
Author(s):  
Hugo Christian Monroy-Ramirez ◽  
Marina Galicia-Moreno ◽  
Ana Sandoval-Rodriguez ◽  
Alejandra Meza-Rios ◽  
Arturo Santos ◽  
...  

Carbohydrates and lipids are two components of the diet that provide the necessary energy to carry out various physiological processes to help maintain homeostasis in the body. However, when the metabolism of both biomolecules is altered, development of various liver diseases takes place; such as metabolic-associated fatty liver diseases (MAFLD), hepatitis B and C virus infections, alcoholic liver disease (ALD), and in more severe cases, hepatocelular carcinoma (HCC). On the other hand, PPARs are a family of ligand-dependent transcription factors with an important role in the regulation of metabolic processes to hepatic level as well as in other organs. After interaction with specific ligands, PPARs are translocated to the nucleus, undergoing structural changes to regulate gene transcription involved in lipid metabolism, adipogenesis, inflammation and metabolic homeostasis. This review aims to provide updated data about PPARs’ critical role in liver metabolic regulation, and their involvement triggering the genesis of several liver diseases. Information is provided about their molecular characteristics, cell signal pathways, and the main pharmacological therapies that modulate their function, currently engaged in the clinic scenario, or in pharmacological development.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 821
Author(s):  
Wanglong Qiu ◽  
Chia-Yu Kuo ◽  
Yu Tian ◽  
Gloria H. Su

Activin, a member of the TGF-β superfamily, is involved in many physiological processes, such as embryonic development and follicle development, as well as in multiple human diseases including cancer. Genetic mutations in the activin signaling pathway have been reported in many cancer types, indicating that activin signaling plays a critical role in tumorigenesis. Recent evidence reveals that activin signaling may function as a tumor-suppressor in tumor initiation, and a promoter in the later progression and metastasis of tumors. This article reviews many aspects of activin, including the signaling cascade of activin, activin-related proteins, and its role in tumorigenesis, particularly in pancreatic cancer development. The mechanisms regulating its dual roles in tumorigenesis remain to be elucidated. Further understanding of the activin signaling pathway may identify potential therapeutic targets for human cancers and other diseases.


Author(s):  
Paolo Cherubini ◽  
Giovanna Battipaglia ◽  
John L. Innes

Abstract Purpose of Review Society is concerned about the long-term condition of the forests. Although a clear definition of forest health is still missing, to evaluate forest health, monitoring efforts in the past 40 years have concentrated on the assessment of tree vitality, trying to estimate tree photosynthesis rates and productivity. Used in monitoring forest decline in Central Europe since the 1980s, crown foliage transparency has been commonly believed to be the best indicator of tree condition in relation to air pollution, although annual variations appear more closely related to water stress. Although crown transparency is not a good indicator of tree photosynthesis rates, defoliation is still one of the most used indicators of tree vitality. Tree rings have been often used as indicators of past productivity. However, long-term tree growth trends are difficult to interpret because of sampling bias, and ring width patterns do not provide any information about tree physiological processes. Recent Findings In the past two decades, tree-ring stable isotopes have been used not only to reconstruct the impact of past climatic events, such as drought, but also in the study of forest decline induced by air pollution episodes, and other natural disturbances and environmental stress, such as pest outbreaks and wildfires. They have proven to be useful tools for understanding physiological processes and tree response to such stress factors. Summary Tree-ring stable isotopes integrate crown transpiration rates and photosynthesis rates and may enhance our understanding of tree vitality. They are promising indicators of tree vitality. We call for the use of tree-ring stable isotopes in future monitoring programmes.


PEDIATRICS ◽  
1965 ◽  
Vol 35 (1) ◽  
pp. 70-75
Author(s):  
Anadil Roselli ◽  
Luiz Torres Barbosa

The cases of two sisters with extreme bilateral adrenal hypoplasia, verified at necropsy, have been presented. Two other siblings died in infancy with symptoms which make it very likely that they also had adrenal hypoplasia. A review of the medical literature revealed 23 cases in which necropsy had been performed. These included 15 males and 8 females as well as one set of twins and 3 siblings. Although the incidence of reported cases of adrenal hypoplasia is low, the authors suggest that many cases may have been missed in the past. The clinical picture and possible etiology of this condition have been discussed.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2551 ◽  
Author(s):  
Sathyadevi Palanisamy ◽  
Yu-Liang Wang ◽  
Yu-Jen Chen ◽  
Chiao-Yun Chen ◽  
Fu-Te Tsai ◽  
...  

Nitroxyl (HNO) plays a critical role in many physiological processes which includes vasorelaxation in heart failure, neuroregulation, and myocardial contractility. Powerful imaging tools are required to obtain information for understanding the mechanisms involved in these in vivo processes. In order to develop a rapid and high sensitive probe for HNO detection in living cells and the zebrafish model organism, 2-((2-(benzothiazole-2yl)benzylidene) amino)benzoic acid (AbTCA) as a ligand, and its corresponding copper(II) complex Cu(II)-AbTCA were synthesized. The reaction results of Cu(II)-AbTCA with Angeli’s salt showed that Cu(II)-AbTCA could detect HNO quantitatively in a range of 40–360 µM with a detection limit of 9.05 µM. Furthermore, Cu(II)-AbTCA is more selective towards HNO over other biological species including thiols, reactive nitrogen, and reactive oxygen species. Importantly, Cu(II)-AbTCA was successfully applied to detect HNO in living cells and zebrafish. The collective data reveals that Cu(II)-AbTCA could be used as a potential probe for HNO detection in living systems.


1995 ◽  
Vol 269 (3) ◽  
pp. C775-C784 ◽  
Author(s):  
K. D. Wu ◽  
W. S. Lee ◽  
J. Wey ◽  
D. Bungard ◽  
J. Lytton

The Ca(2+)-adenosinetriphosphatase pump of the sarcoplasmic or endoplasmic reticulum (SERCA) plays a critical role in Ca2+ signaling and homeostasis in all cells and is encoded by a family of homologous and alternatively spliced genes. To understand more clearly the role the different isoforms play in cell physiology, we have undertaken a quantitative and qualitative assessment of the tissue distribution of transcripts encoding each SERCA isoform. SERCA1 expression is restricted to fast-twitch striated muscles, SERCA2a to cardiac and slow-twitch striated muscles, whereas SERCA2b is ubiquitously expressed. SERCA3 is expressed most abundantly in large and small intestine, thymus, and cerebellum and at lower levels in spleen, lymph node, and lung. In situ hybridization analyses revealed SERCA3 transcripts in cells of the intestinal crypt, the thymic cortex, and Purkinje cells in cerebellum. In addition, SERCA3 was expressed abundantly in isolated rat spleen lymphocytes, in various murine lymphoid cell lines, and in primary cultured microvascular endothelial cells. This analysis demonstrates that SERCA3 is expressed selectively in cells in which Ca2+ signaling plays a critical and sensitive role in regulating physiological processes.


2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Xuan Li ◽  
Jia Liu ◽  
Qingguo Lu ◽  
Di Ren ◽  
Xiaodong Sun ◽  
...  

Abstract Heart failure (HF) is a serious disease with high mortality. The incidence of this disease has continued to increase over the past decade. All cardiovascular diseases causing dysfunction of various physiological processes can result in HF. AMP-activated protein kinase (AMPK), an energy sensor, has pleiotropic cardioprotective effects and plays a critical role in the progression of HF. In this review, we highlight that AMPK can not only improve the energy supply in the failing heart by promoting ATP production, but can also regulate several important physiological processes to restore heart function. In addition, we discuss some aspects of some potential clinical drugs which have effects on AMPK activation and may have value in treating HF. More studies, especially clinical trials, should be done to evaluate manipulation of AMPK activation as a potential means of treating HF.


Sign in / Sign up

Export Citation Format

Share Document