scholarly journals Characterization of Liposomes for Cancer Cell Transfection

2007 ◽  
Vol 1 (1) ◽  
pp. 60-63
Author(s):  
Svetlana A Tatarkova ◽  
Satvinder Khaira

We have characterized a broad range of liposome formulations with varying DcChol:DOPE ratio. Subsequent addition of DcChol to liposomes increases its positive surface charge. However, loading the nuclear acids did not neutralize the overall negative surface potential to a similar extent. The liposomes were tested by transfection of DNA in living cancer cells.

Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 832
Author(s):  
Lexi Crowell ◽  
Juan Yakisich ◽  
Brian Aufderheide ◽  
Tayloria Adams

Electrical impedance spectroscopy (EIS) is an electrokinetic method that allows for the characterization of intrinsic dielectric properties of cells. EIS has emerged in the last decade as a promising method for the characterization of cancerous cells, providing information on inductance, capacitance, and impedance of cells. The individual cell behavior can be quantified using its characteristic phase angle, amplitude, and frequency measurements obtained by fitting the input frequency-dependent cellular response to a resistor–capacitor circuit model. These electrical properties will provide important information about unique biomarkers related to the behavior of these cancerous cells, especially monitoring their chemoresistivity and sensitivity to chemotherapeutics. There are currently few methods to assess drug resistant cancer cells, and therefore it is difficult to identify and eliminate drug-resistant cancer cells found in static and metastatic tumors. Establishing techniques for the real-time monitoring of changes in cancer cell phenotypes is, therefore, important for understanding cancer cell dynamics and their plastic properties. EIS can be used to monitor these changes. In this review, we will cover the theory behind EIS, other impedance techniques, and how EIS can be used to monitor cell behavior and phenotype changes within cancerous cells.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2900
Author(s):  
Diren Beyoğlu ◽  
Jeffrey R. Idle

The study of low-molecular-weight metabolites that exist in cells and organisms is known as metabolomics and is often conducted using mass spectrometry laboratory platforms. Definition of oncometabolites in the context of the metabolic phenotype of cancer cells has been accomplished through metabolomics. Oncometabolites result from mutations in cancer cell genes or from hypoxia-driven enzyme promiscuity. As a result, normal metabolites accumulate in cancer cells to unusually high concentrations or, alternatively, unusual metabolites are produced. The typical oncometabolites fumarate, succinate, (2R)-hydroxyglutarate and (2S)-hydroxyglutarate inhibit 2-oxoglutarate-dependent dioxygenases, such as histone demethylases and HIF prolyl-4-hydroxylases, together with DNA cytosine demethylases. As a result of the cancer cell acquiring this new metabolic phenotype, major changes in gene transcription occur and the modification of the epigenetic landscape of the cell promotes proliferation and progression of cancers. Stabilization of HIF1α through inhibition of HIF prolyl-4-hydroxylases by oncometabolites such as fumarate and succinate leads to a pseudohypoxic state that promotes inflammation, angiogenesis and metastasis. Metabolomics has additionally been employed to define the metabolic phenotype of cancer cells and patient biofluids in the search for cancer biomarkers. These efforts have led to the uncovering of the putative oncometabolites sarcosine, glycine, lactate, kynurenine, methylglyoxal, hypotaurine and (2R,3S)-dihydroxybutanoate, for which further research is required.


1987 ◽  
Vol 89 (4) ◽  
pp. 629-644 ◽  
Author(s):  
R S Kass ◽  
D S Krafte

We have measured the density of negative surface charges near the voltage sensor for inactivation gating of (L-type) Ca channels in intact calf Purkinje fibers and in isolated myocytes from guinea pig and rat ventricles. Divalent cation-induced changes in the half-maximal voltage for inactivation were determined and were well described by curves predicted by surface potential theory. We measured shifts in inactivation induced by Ca, Sr, and Ba in the single cells, and by Sr in the Purkinje fibers. All of the data were consistent with an estimated negative surface charge density of 1 electronic charge per 250 A2. In addition, the data suggest that Ca, but neither Ba nor Sr, binds to the negative charges with an association constant on the order of 1 M-1. We find that divalent ion-induced changes in surface potential can account for most of the antagonism between these ions and Ca channel block by 1,4-dihydropyridines.


2019 ◽  
Vol 7 (7) ◽  
pp. 2759-2768 ◽  
Author(s):  
Yishu He ◽  
Jingwen Qin ◽  
Shengming Wu ◽  
Haocheng Yang ◽  
Huiyun Wen ◽  
...  

The nanomaterial–cell interface plays an important role in biodetection and therapy. The experimental results in this study indicated that the magnetic nanocomposites with strong positive surface charge but different geometry interacted with cancer cells in different ways, leading to various cell capture efficiency and cytotoxicity.


2020 ◽  
Author(s):  
Edmond O'Donnell ◽  
Hyo Sang Jang ◽  
Daniel Liefwalker ◽  
Nancy Kerkvliet ◽  
Siva Kumar Kolluri

Abstract Background: The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and a member of the bHLH/PAS (basic Helix-Loop-Helix/Per-Arnt-Sim) family of proteins. The AhR was cloned and characterized for its role in mediating the toxicity of dioxins. Subsequent research has identified AhR’s role in the suppression of cancer cell growth. We hypothesized that that the AhR is a molecular target for therapeutic interventions, and that activation of the AhR by select AhR modulators in cancer cells could have anti-cancer properties including cell death. This study describes the discovery and characterization of a new class of anti-cancer agents targeting the AhR.Methods: We employed two independent small molecule screening approaches to identify novel modulators of the AhR with unique anti-cancer properties. We established the AhR selective effects of a highly selective modulator in cancer cells with or without the AhR expression and identified the mechanism of action of this anti-cancer compound.Results: We report the identification of CGS-15943, uniquely selective AhR modulator, that activates AhR signaling and induces apoptosis in an AhR-dependent manner in liver and breast cancer cell models. Investigation of the downstream signaling pathway of this newly identified modulator revealed novel upregulation of Fas-ligand, which is required for AhR-mediated apoptosis.Conclusions: We identified CGS-15943 as a novel AhR-selective modulator with anti-cancer properties using two parallel and distinct screening strategies. This compound induced AhR-dependent apoptosis in multiple mouse and human liver cancer cells. Our results provide a basis for the development of a new class of anti-cancer therapeutics targeting an underappreciated molecular target, the AhR.


2019 ◽  
Vol 15 (11) ◽  
pp. 2262-2270
Author(s):  
Jing Gong ◽  
Yingying Zhang ◽  
Yong Huang ◽  
Tingying Zhang ◽  
Beibei Liang ◽  
...  

Gold nano rods (GNRs) have showed cytotoxicity to cancer cells. At the same time, it shows little effects on non-tumor cells. Between GNRs and sub-cellular organelles, the understanding of interaction plays a very important role to determine the intracellular mechanisms. The purpose of what we done is to explain the effects of the surface properties of GNRs on specific cancer cell death. Three GNR samples with different aspect ratios were finely prepared by the seed-mediated growth method. Then the intracellular transport and the in vitro/vivo mechanisms of cancer cell death were studied by transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), laser light scattering, and flow cytometry (FCM). It was found that GNRs700 exhibited the largest photothermal conversion efficiency. However, the GNR660 with or without light stimulation exhibited the highest cytotoxicity against cancer cells, which was contradict to the general knowledge. Detailed intracellular investigations showed that the lysosome was the key sub-organelle affecting the GNR function. Further experiments revealed that cytotoxicity was strongly affected by the GNR's surface potential. This potential was actually related to the density of surface cationic molecules, which further regulated lysosomal membrane penetration. The results obtained herein indicated that the physicochemical properties of the surface potential mediated the specific toxicity of GNRs against tumours.


1973 ◽  
Vol 51 (11) ◽  
pp. 785-789 ◽  
Author(s):  
M. A. Singer

Local anesthetics reduce both the surface charge and cation permeability of phosphatidylcholine (PC) liposomes containing the long chain anion dicetylphosphate. These agents also reduce the negative surface charge of PC vesicles dispersed in a salicylate solution, but in this case cation permeability is enhanced. It is proposed that the local anesthetic, by reducing the negative surface potential on the PC–salicylate liposome, permits the adsorption of more salicylate anions. The resultant higher salicylate surface concentration is responsible for the increased cation permeability.


Sign in / Sign up

Export Citation Format

Share Document