scholarly journals Diagnosis and Treatment of Vascular Surgery Related Infection

2015 ◽  
Vol 9 (1) ◽  
pp. 250-255 ◽  
Author(s):  
Yong-Gan Zhang ◽  
Xue-Li Guo ◽  
Yan Song ◽  
Chao-Feng Miao ◽  
Chuang Zhang ◽  
...  

Surgical site infection (SSI) is an important component of infections acquired from hospital. The most significant feature of vascular surgery different from other surgeries is frequent application of artificial grafts. Once SSI occurs after vascular operations with grafts, it might results in a serious disaster. Staphylococcus aureus and coagulase-negative Staphylococcus are the most common pathogenic bacteria for SSI after vascular surgery. Although SSI in vascular surgery often lacks of typical clinical characters, some clinical symptoms, laboratory data and certain imaging procedures may help to diagnose. In most cases of SSI after vascular procedures, the artificial grafts must be removed and sensitive antibiotics should be administered. However, for different cases, personalized management plan should be made depending on the severity and location of SSI.

2012 ◽  
Vol 13 (2) ◽  
pp. 152-159 ◽  
Author(s):  
Nazar M Abdalla ◽  
Waleed O Haimour ◽  
Amani A Osman ◽  
Hassan Abdul Aziz

General objectives: This study aimed at assessment of factors affecting antimicrobial sensitivity in Staphylococcus aureus clinical isolates from Assir region, Saudi Arabia. Materials and Methods: In this study, eighty one patients presented with Staph. aureus infections either nosocomial or community acquired infections were involved by collecting nasal swabs from them at Aseer Central Hospital General Lab. These patients were from all age groups and from males and females during the period of Jan 2011- Jun 2011. These samples were undergone variable laboratory procedures mainly; bactech, culture media, antibiotics sensitivity test using diffusion disc test (MIC) and molecular (PCR) for detection of mec A gene. Clinical and laboratory data were recorded in special formats and analyzed by statistical computer program (SPSS). Results: Showed that; Descriptive and analytical statistical analysis were performed and final results were plotted in tables. In Staph aureus MecA gene positive cases (50) showed: Oxacillin/ Mithicillin, Ciprofloxacin and Fusidin resistant in diabetic patients were 13, 26.0%, 9, 18% and 7, 14% respectively and in non diabetic patients were 37, 74.0%, 22, 44% and 20, 40% respectively. While no sensitivity in diabetic and non diabetic patients using Oxacillin/ Mithicillin. In Staph aureus MecA gene negative cases (31) showed: Oxacillin/ Mithicillin, sensitivity in diabetic patients (5, 16.1%) and in non diabetic were (26, 83.9%). While no resistant in diabetic and non diabetic patients. In Ciprofloxacin and Fusidin resistant in diabetic patients were 1, 3.2% and 1, 3.2% respectively and in non diabetic patients were 12, 38.7% and 7, 22.6%respectively. Erythromycin in Staph aureus ( MecA gene) positive cases (50) showed: resistant in age (0-15) years were (5, 10%), (16-50) years were (16, 32%) and ( ›50 years) were (12, 24%). Erythromycin in Staph aureus (MecA gene) negative cases (31) showed: resistant in age (0-15) years were (6, 19.3%), (16-50) years were (5, 16.1%) and ( ›50 years) were (3, 9.7%). Conclusion: Drugs resistance is a major progressive multifactorial problem facing the treatment of Staph aureus infections. DOI: http://dx.doi.org/10.3329/jom.v13i2.12750 J Medicine 2012; 13 : 152-159


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sushant Kumar ◽  
Arunabh Athreya ◽  
Ashutosh Gulati ◽  
Rahul Mony Nair ◽  
Ithayaraja Mahendran ◽  
...  

AbstractTransporters play vital roles in acquiring antimicrobial resistance among pathogenic bacteria. In this study, we report the X-ray structure of NorC, a 14-transmembrane major facilitator superfamily member that is implicated in fluoroquinolone resistance in drug-resistant Staphylococcus aureus strains, at a resolution of 3.6 Å. The NorC structure was determined in complex with a single-domain camelid antibody that interacts at the extracellular face of the transporter and stabilizes it in an outward-open conformation. The complementarity determining regions of the antibody enter and block solvent access to the interior of the vestibule, thereby inhibiting alternating-access. NorC specifically interacts with an organic cation, tetraphenylphosphonium, although it does not demonstrate an ability to transport it. The interaction is compromised in the presence of NorC-antibody complex, consequently establishing a strategy to detect and block NorC and related transporters through the use of single-domain camelid antibodies.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1786
Author(s):  
György Schneider ◽  
Bettina Schweitzer ◽  
Anita Steinbach ◽  
Botond Zsombor Pertics ◽  
Alysia Cox ◽  
...  

Contamination of meats and meat products with foodborne pathogenic bacteria raises serious safety issues in the food industry. The antibacterial activities of phosphorous-fluorine co-doped TiO2 nanoparticles (PF-TiO2) were investigated against seven foodborne pathogenic bacteria: Campylobacter jejuni, Salmonella Typhimurium, Enterohaemorrhagic E. coli, Yersinia enterocolitica, Shewanella putrefaciens, Listeria monocytogenes and Staphylococcus aureus. PF-TiO2 NPs were synthesized hydrothermally at 250 °C for 1, 3, 6 or 12 h, and then tested at three different concentrations (500 μg/mL, 100 μg/mL, 20 μg/mL) for the inactivation of foodborne bacteria under UVA irradiation, daylight exposure or dark conditions. The antibacterial efficacies were compared after 30 min of exposure to light. Distinct differences in the antibacterial activities of the PF-TiO2 NPs, and the susceptibilities of tested foodborne pathogenic bacterium species were found. PF-TiO2/3 h and PF-TiO2/6 h showed the highest antibacterial activity by decreasing the living bacterial cell number from ~106 by ~5 log (L. monocytogenes), ~4 log (EHEC), ~3 log (Y. enterolcolitca, S. putrefaciens) and ~2.5 log (S. aureus), along with complete eradication of C. jejuni and S. Typhimurium. Efficacy of PF-TiO2/1 h and PF-TiO2/12 h NPs was lower, typically causing a ~2–4 log decrease in colony forming units depending on the tested bacterium while the effect of PF-TiO2/0 h was comparable to P25 TiO2, a commercial TiO2 with high photocatalytic activity. Our results show that PF-co-doping of TiO2 NPs enhanced the antibacterial action against foodborne pathogenic bacteria and are potential candidates for use in the food industry as active surface components, potentially contributing to the production of meats that are safe for consumption.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 223
Author(s):  
Enrico Caruso ◽  
Viviana Teresa Orlandi ◽  
Miryam Chiara Malacarne ◽  
Eleonora Martegani ◽  
Chiara Scanferla ◽  
...  

Decontaminating coating systems (DCSs) represent a challenge against pathogenic bacteria that may colonize hospital surfaces, causing several important infections. In this respect, surface coatings comprising photosensitizers (PSs) are promising but still controversial for several limitations. PSs act through a mechanism of antimicrobial photodynamic inactivation (aPDI) due to formation of reactive oxygen species (ROS) after light irradiation. However, ROS are partially deactivated during their diffusion through a coating matrix; moreover, coatings should allow oxygen penetration that in contact with the activated PS would generate 1O2, an active specie against bacteria. In the attempt to circumvent such constraints, we report a spray DCS made of micelles loaded with a PS belonging to the BODIPY family (2,6-diiodo-1,3,5,7-tetramethyl-8-(2,6-dichlorophenyl)-4,4′-difluoroboradiazaindacene) that is released in a controlled manner and then activated outside the coating. For this aim, we synthesized several amphiphilic copolymers (mPEG–(PLA)n), which form micelles, and established the most stable supramolecular system in terms of critical micelle concentration (CMC) and ∆Gf values. We found that micelles obtained from mPEG–(PLLA)2 were the most thermodynamically stable and able to release BODIPY in a relatively short period of time (about 80% in 6 h). Interestingly, the BODIPY released showed excellent activity against Staphylococcus aureus even at micromolar concentrations.


2005 ◽  
Vol 187 (2) ◽  
pp. 554-566 ◽  
Author(s):  
Lauren M. Mashburn ◽  
Amy M. Jett ◽  
Darrin R. Akins ◽  
Marvin Whiteley

ABSTRACT Pseudomonas aeruginosa is a gram-negative opportunistic human pathogen often infecting the lungs of individuals with the heritable disease cystic fibrosis and the peritoneum of individuals undergoing continuous ambulatory peritoneal dialysis. Often these infections are not caused by colonization with P. aeruginosa alone but instead by a consortium of pathogenic bacteria. Little is known about growth and persistence of P. aeruginosa in vivo, and less is known about the impact of coinfecting bacteria on P. aeruginosa pathogenesis and physiology. In this study, a rat dialysis membrane peritoneal model was used to evaluate the in vivo transcriptome of P. aeruginosa in monoculture and in coculture with Staphylococcus aureus. Monoculture results indicate that approximately 5% of all P. aeruginosa genes are differentially regulated during growth in vivo compared to in vitro controls. Included in this analysis are genes important for iron acquisition and growth in low-oxygen environments. The presence of S. aureus caused decreased transcription of P. aeruginosa iron-regulated genes during in vivo coculture, indicating that the presence of S. aureus increases usable iron for P. aeruginosa in this environment. We propose a model where P. aeruginosa lyses S. aureus and uses released iron for growth in low-iron environments.


2001 ◽  
Vol 45 (12) ◽  
pp. 3456-3461 ◽  
Author(s):  
Mervi Tenhami ◽  
Kaisa Hakkila ◽  
Matti Karp

ABSTRACT The spread of antibiotic resistance among pathogenic bacteria is a serious threat to humans and animals. Therefore, unnecessary use should be minimized, and new antimicrobial agents with novel mechanisms of action are needed. We have developed an efficient method for measuring the action of antibiotics which is applied to a gram-positive strain,Staphylococcus aureus RN4220. The method utilizes the firefly luciferase reporter gene coupled to the metal-induciblecadA promoter in a plasmid, pTOO24. Correctly timed induction by micromolar concentrations of antimonite rapidly triggers the luciferase gene transcription and translation. This sensitizes the detection system to the action of antibiotics, and especially for transcriptional and translational inhibitors. We show the results for 11 model antibiotics with the present approach and compare them to an analytical setup with a strain where luciferase expression is under the regulation of a constitutive promoter giving only a report of metabolic inhibition. The measurement of light emission from intact living cells is shown to correlate extremely well (r = 0.99) with the conventional overnight growth inhibition measurement. Four of the antibiotics were within a 20% concentration range and four were within a 60% concentration range of the drugs tested. This approach shortens the assay time needed, and it can be performed in 1 to 4 h, depending on the sensitivity needed. Furthermore, the assay can be automatized for high-throughput screening by the pharmaceutical industry.


2021 ◽  
Vol 1 (1) ◽  
pp. 6-11
Author(s):  
Dzmitry Katovich ◽  
Claudia Grun ◽  
Hanna Katovich ◽  
Bastian Hauer ◽  
Thomas Iber ◽  
...  

The present case series study presents the preliminary data of 347 of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) positively tested patients in the Mittelbaden hospital, Baden-Baden Bühl, Germany, during the period from March to June 2020. Among the 347 patients, 55% were males. The mean age-wise was 52.5±20.2 years in the overall cohort and 78.9±11.1 years in fatal outcome cases. A total of 120/347 patients (34.6%) required hospitalization, but only 36/347 (10.37%) cases required intensive care. The overall fatality rate was 6.6% (23/347), of which 12 patients were from the intensive care unit. The most frequent clinical symptoms observed were cough (62.5%), hyperthermia (47.8%), rhinorrhea (25.1%), sore throat (23.1%), dyspnea (22.8%), and headache (19.3%). Laboratory data analysis showed no specific findings, but severe laboratory disturbances could predict critical illness. A higher risk of severe illness or lethal outcome in elderly patients with several comorbidities was the most frequent. The fight against COVID-19 infection in Germany seems to be more successful during the first wave than in other countries. The improvement of the healthcare system against infectious outbreaks depends directly on the analysis of regional factors.


Sign in / Sign up

Export Citation Format

Share Document