scholarly journals The Evaluation of Flash Point and Cold Filter Plugging Point with Blends of Diesel and Cyn-Diesel Pyrolysis Fuel for Automotive Engines

2013 ◽  
Vol 6 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Fionnuala Murphy ◽  
G. Devlin ◽  
K McDonnell

The production of synthetic fuels from alternative sources has increased in recent years as a cleaner, more sustainable source of transport fuel is now required. The European Commission has outlined renewable energy targets pertaining to transport fuel which must be met by 2020. In response to these targets Ireland has committed, through the Biofuels Obligation Scheme of 2008, to producing 3% of transport fuels from biofuels by 2010 and 10% by 2020. In order to be suitable for sale in Europe, diesel fuels and biodiesels must meet certain European fuel specifications outlined in the EN 590:2009 standard. The aim of this paper was to prepare blends of varying proportions of synthetic diesel (Cyn-diesel) fuel, produced from the pyrolysis of plastic, vs regular fossil diesel. The flash point (°C) and cold filter plugging point (°C) of these blends as well as of the conventional petroleum diesel fuel were analysed in relation to compliance with the European fuel standard EN 590. The results confirmed that blending of Cyn-diesel with conventional petroleum diesel has a highly significant effect on the properties of the resulting fuel blend. The results show that by increasing the Cyn-diesel content of the blend, the flash point of the blend decreases and the cold filter plugging point increases. Furthermore, comparing the fuel blends to EN 590 specifications has highlighted significant trends. The cold filter plugging points of all of the fuel blends are in compliance with EN 590 specifications. However, only blends of up to, and including, 40% Cyn-diesel are in compliance with EN 590 specifications for flash point. This analysis shows that a blend of 40% Cyndiesel is in compliance with all of the EN 590 specifications examined, and as such could be placed on the European fuel market (provided that the blend meets the requirements for the other properties in the EN 590 specification). This finding highlights the potential for Cyn-diesel blends to be incorporated into the European and national renewable energy targets.

2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Paramvir Singh ◽  
S. R. Chauhan ◽  
Varun Goel ◽  
Ashwani K. Gupta

Fossil fuel consumption provides a negative impact on the human health and environment in parallel with the decreased availability of this valuable natural resource for the future generations to use as a source of chemical energy for all applications in energy, power, and propulsion. The diesel fuel consumption in the transport sector is higher than the gasoline in most developing countries for reasons of cost and economy. Biodiesel fuel offers a good replacement for diesel fuel in compression ignition (CI) diesel engines. Earlier investigations by the authors revealed that a blend of 70% amla seed oil biodiesel and 30% eucalyptus oil (AB70EU30) is the favorable alternative renewable fuel blend that can be used as a fuel in diesel engines. With any fuel, air/fuel mixing and mixture preparation impact efficiency, emissions, and performance in CI engines. Minor adjustments in engine parameters to improve air/fuel mixing and combustion are deployable approaches to achieve good performance with alternative fuel blends in CI engines. This paper provides the role of a minor modification to engine parameters (compression ratio, injection timing, and injection pressure) on improved performance using the above mixture of binary fuel blends (AB70EU30). The results showed that the use of AB70EU30 in modified engine resulted in higher brake thermal efficiency and lower brake specific fuel consumption compared to normal diesel for improved combustion that also resulted in very low tailpipe emissions.


Author(s):  
Yaodong Wang ◽  
Neil Hewitt ◽  
Philip Eames ◽  
Shengchuo Zeng ◽  
Jincheng Huang ◽  
...  

Experimental tests have been carried out to evaluate the performance and emissions characteristics of a diesel engine when fuelled by blends of 25% vegetable oil with 75% diesel fuel, 50% vegetable oil with 50% diesel fuel, 75% vegetable oil with 25% diesel fuel, and 100% vegetable oil, compared with the performance, emissions characteristics of 100% diesel fuel. The series of tests were conducted and repeated six times using each of the test fuels. 100% of ordinary diesel fuel was also used for comparison purposes. The engine worked at a fixed speed of 1500 r/min, but at different loads respectively, i.e. 0%, 25%, 50%, 75% and 100% of the engine load. The performance and the emission characteristics of exhaust gases of the engine were compared and analyzed. The experimental results showed that the carbon monoxide (CO) emission from the vegetable oil and vegetable oil/diesel fuel blends were nearly all higher than that from pure diesel fuel at the engine 0% load to 75% load. Only at the 100% engine load point, the CO emission of vegetable oil and vegetable oil/diesel fuel blends was lower than that of diesel fuel. The hydrocarbon (HC) emission of vegetable oil and vegetable/diesel fuel blends were lower than that of diesel fuel, except that 50% of vegetable oil and 50% diesel fuel blend was a little higher than that of diesel fuel. The oxides of nitrogen (NOx) emission of vegetable oil and vegetable oil/diesel fuel blends, at the range of tests, were lower than that of diesel fuel.


Author(s):  
Jakub Čedík ◽  
Martin Pexa ◽  
Bohuslav Peterka ◽  
Miroslav Müller ◽  
Michal Holubek ◽  
...  

Liquid biofuels for compression ignition engines are often based on vegetable oils. In order to be used in compression ignition engine the vegetable oils have to be processed because of their high viscosity or it is also possible to use vegetable oils in fuel blends. In order to decrease the viscosity of the fuel blends containing crude vegetable oil the alcohol-based fuel admixtures can be used. The paper describes the effect of rapeseed oil–diesel fuel–n-butanol blends on combustion characteristics and solid particles production of turbocharged compression ignition engine. The 10% and 20% concentrations of n-butanol in the fuel blend were measured and analysed. The engine Zetor 1204, located in tractor Zetor Forterra 8641 with the power of 60kW and direct injection was used for the measurement. The engine was loaded through power take off shaft of the tractor using mobile dynamometer MAHA ZW500. The measurement was carried out in stabilized conditions at 20%, 60% and 100% engine load. The engine speed was kept at 1950 rpm. Tested fuel blends showed lower production of solid particles than diesel fuel and lower peak cylinder pressure and with increasing concentration of n-butanol in the fuel blend the ignition delay was prolonged and premixed phase of combustion was increased.


2019 ◽  
Vol 31 (7) ◽  
pp. 1257-1280 ◽  
Author(s):  
Abbas Hojati ◽  
Alireza Shirneshan

In this research, a thermodynamic zero-dimensional model has been done to predict performance characteristics (in-cylinder pressure, heat released, and the thermal efficiency) of a diesel engine with the use of biodiesel–diesel fuel blends (B0, B20, B50, B80, and B100) at different compression ratios (14, 15, 16, 17, and 18). The corresponding mathematical and thermodynamic relationships have been solved in MATLAB. Based on the experimental tests, it was found that the developed model can predict the engine variables sufficiently. According to the results, the heat release rate and the cylinder pressure increased for all fuel blends by an increase in the compression ratio. Moreover, with the increasing biodiesel amount in the fuel blend (up to 50%) heat release rate and the cylinder pressure increased but these variables have a reduction when biodiesel percentage increases from 50 to 100 due to the lower heating value of waste cooking oil methyl ester in comparison with neat diesel fuel. Moreover, according to the experimental tests, carbon monoxide emission was reduced when biodiesel proportion increased in the fuel blend but the nitrogen oxides emitted from the engine enhanced when biodiesel amount in the fuel mixture increased. According to the results, it can be concluded that B50 has better combustion characteristics among all fuel blends.


Author(s):  
Yogaraj D ◽  
Jaichandar S

The waste cooking biodiesel's steady-state coefficient of friction rate of fuel blends are B90 (18.2%), B60 (7.2%), B20 (16.72%), B10 (30.8%), and diesel (38.77%) higher compared with B40 fuel blend and wear scar diameter of the fuel blends from B40 to B100 had a minimal range of 0.5mm. The flash temperature parameter results higher from B40 to B100 fuel blends, and the corrosion rate was minimal for B40 and B50 fuel blends. Afterward, the fuel blend B40 (40% WCO+60% Diesel fuel) was chosen as fuel, along with Cerium (25ppm), Zinc (25ppm), and Titanium nanoparticles (25ppm) were selected as fuel additives. The B40+D60+Titanium (25ppm) blend resulted in improved BTE and 3.83% lowered BSEC comparison with diesel fuel. Then the fuel blend, B40+D80+Titanium (25ppm), resulted in 2.08% reduced HC, 36.36% CO, and 16.25% smoke emissions, along with marginally 8.5% higher NOx emissions comparison with diesel fuel. Also, the fuel blend, B40+D80+Titanium (25ppm) combustions characteristics are the equivalent trend of cylinder pressure (58.82 bar) and HRR (66.65 J/deg CA) related to diesel fuel at peak load.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 623
Author(s):  
María Dolores Redel-Macías ◽  
Sara Pinzi ◽  
Meisam Babaie ◽  
Ali Zare ◽  
Antonio Cubero-Atienza ◽  
...  

The growing demand for fossil fuels, the rise in their price and many environmental concerns strengthen the incessant search for fuel alternatives. Recently, traffic noise has been described as a threat to human health and the environment, being responsible for premature deaths. In this context, the usage of alcohol/diesel fuel blends in diesel engines has gained increasing impact as a substitute fuel for use in internal combustion engines. Moreover, alcohol can be derived from environmentally friendly processes, i.e., fermentation. Furthermore, alcohols can enhance combustion characteristics due to a rise of the oxygen concentration, thus decreasing major emissions such as soot and reducing knock. The commonly used alcohols blended with diesel fuel are methanol and ethanol, recently followed by butanol. In contrast, there are very few studies about propanol blends; however, emissions reduction (including noise) could be remarkable. In the present work, an analytical literature review about noise and exhaust emissions from alcohol/diesel fuel blends was performed. The literature review analysis revealed a continuous increase in the number of publications about alcohol/diesel fuel blend exhaust emissions since 2000, confirming the growing interest in this field. However, only few publications about noise emission were found. Then, an experimental case study of noise emitted by an engine running on different alcohol (ethanol, butanol and propanol)/diesel fuel blends was presented. Experimental results showed that although diesel fuel provided the best results regarding noise emissions, butanol displayed the least deviation from that of diesel fuel among all tested alcohol blends. It may be concluded that tested alcohol/diesel fuel blends in general, and butanol blends in particular, could be a promising alternative to diesel fuel, considering noise behavior.


2019 ◽  
Vol 177 (2) ◽  
pp. 132-135
Author(s):  
Gvidonas LABECKAS ◽  
Stasys SLAVINSKAS ◽  
Tomas MICKEVIČIUS ◽  
Raimondas KREIVAITIS

This paper presents comparative experimental study’s results of ethanol-diesel fuel blends made effects on operational properties of a high-pressure fuel pump of a common rail injection system. The two identical fuel injection systems mounted on a test bed of the fuel injection pumps were prepared for the experimental durability tests. The lubricity properties of ethanol-diesel fuel blends E10 and E20 blends were studied using a four-ball tribometer. The test results showed that long-term (about 100 hours) using of ethanol-diesel blends produced a negative effect on the durability of the high-pressure fuel pump. Due to the wear of plunger-barrel units the decrease in the fuel delivery rate occurred of about 39% after the 100 h of continuous operation with ethanol-diesel fuel blends. The average friction coefficients of ethanol-diesel fuel blend E10 was lower than that of the normal diesel fuel. After the 100 hours of operation with ethanoldiesel fuel blend E10, the measured wear scar diameter was 10% higher than that of a fossil diesel fuel.


2011 ◽  
Vol 347-353 ◽  
pp. 2688-2691 ◽  
Author(s):  
Tsair Wang Chung ◽  
Kuan Ting Liu ◽  
Shun Gao

The measurements of oil properties of crude Jatropha oil and its blends of 10%, 20%, 30%, 40%, and 50% with diesel fuel have been carried out in this study. Our results suggested that the viscosities of crude Jatropha oil (CJO) blends decrease gradually with increasing temperatures, but they increase gradually with rising ratio of crude Jatropha oil compared to those of diesel fuel. Analysis of physical properties suggested that cold filter plugging point, calorific value, gravity and cetane index decrease gradually with rising percentages of crude Jatropha oil, but the flash point and mid boiling point increase gradually compared to those of diesel fuel. In this study, the prepared oil blends are applied to a power generator for a real application test. Results of electricity generation suggested that crude Jatropha oil blends may be used as an alternative fuel compared to that of diesel fuel. Results of gas emissions in a power generator suggested that CO, CO2 and NOX emissions from crude Jatropha oil blends are lower, but O2 emissions are higher compared to those of diese fuels.


2014 ◽  
Vol 660 ◽  
pp. 426-430 ◽  
Author(s):  
Syaiful ◽  
Sobri ◽  
Nathanael P. Tandian

The aim of this study is to experimentally investigate an effect of low and high purity methanol on a performance and smoke emission of diesel engine with cooled EGR system fueled by diesel fuel and jatropha oil blend. A four-stroke water cooled direct injection (DI) diesel engine with cooled EGR system was used in this work. The diesel engine was fueled by diesel fuel, jatropha oil and low (LPM) or high (HPM) purity methanol blends at the ratio of 100/0/0, 75/20/5, 70/20/10 and 65/20/15 % on volume basis respectively for the variation of engine loads in the range of 25 to 100% with 25% increments at 2000 rpm. Each load for every fuel blend was given by the 0% and 16.5% EGR rates. The results are found that the brake power for diesel engine fueled by diesel fuel, jatropha oil and LPM is approximately 8% lower than that of diesel engine fueled with the neat diesel, while it increases to 5.24% at the low load and reduces to 6.11% at the high load by injecting HPM in the fuel blends. At the same case, BSFC increases approximately 4.5% by injecting LPM in the fuel blends. The brake thermal efficiency rises approximately by 3.3% with LPM in the fuel blends, whereas it increases approximately 6% by injecting HPM. The smoke opacity reduces approximately by 70% with LPM or HPM in the fuel blends.


Sign in / Sign up

Export Citation Format

Share Document