scholarly journals The Effect of Alkaline Activator Types on Strength and Microstructural Properties of Geopolymer from Co-Combustion Residuals of Bamboo and Kaolin

2018 ◽  
Vol 18 (3) ◽  
pp. 397 ◽  
Author(s):  
Aprilina Purbasari ◽  
Tjokorde Walmiki Samadhi ◽  
Yazid Bindar

Geopolymer as a Portland cement substitute had been synthesized from alkaline activation of co-combustion residuals of bamboo and kaolin. Types of used alkaline activators were NaOH solution, KOH solution, a mixture of NaOH solution-water glass, and a mixture of KOH solution-water glass. Geopolymer with NaOH solution as activator had a compressive strength which was higher compared to geopolymer with KOH solution as an activator. However, geopolymer with NaOH solution-water glass as activator had a compressive strength which was lower compared to geopolymer with KOH solution-water glass as activator either at room temperature curing or at a curing temperature of 60 °C. The use of water glass with NaOH or KOH solution as activator could increase the compressive strength of geopolymer and yielded geopolymer having more dense and more homogeneous microstructure seen from SEM images. XRD patterns revealed the presence of sodium aluminosilicate hydrate in geopolymer with NaOH solution and NaOH solution-water glass as activators, and potassium aluminosilicate hydrate in geopolymer with KOH solution and KOH solution-water glass as activators. Furthermore, FTIR spectra indicated asymmetrical vibration of Si(Al)-O at around 1008 cm-1 related to geopolymer product.

2011 ◽  
Vol 328-330 ◽  
pp. 1475-1482 ◽  
Author(s):  
M. M. A. Abdullah ◽  
H. Kamarudin ◽  
M. Bnhussain ◽  
I. Khairul Nizar ◽  
A.R. Rafiza ◽  
...  

Geopolymer, produced by the reaction of fly ash with an alkaline activator (mixture of Na2SiO3 and NaOH solutions), is an alternative to the use of ordinary Portland cement (OPC) in the construction industry. However, there are salient parameters that affecting the compressive strength of geopolymer. In this research, the effects of various NaOH molarities, Na2SiO3/NaOH ratios, fly ash/alkaline activator, and curing temperature to the strength of geopolymer paste fly ash were studied. Tests were carried out on 50 x 50 x 50 mm cube geopolymer specimens. Compression tests were conducted on the seventh day of testing for all samples. The test results revealed that a 12 M NaOH solution produced the highest compressive strength for the geopolymer. The combination mass ratios of fly ash/alkaline activator and Na2SiO3/NaOH of 2.0 and 2.5, respectively, produced the highest compressive strength after seven days. Geopolymer samples cured at 60 °C produced compressive strength as high as 70 MPa.


2019 ◽  
Vol 11 (11) ◽  
pp. 1566-1573
Author(s):  
Chao Cui ◽  
Zhen Liu ◽  
Jianren Zhang ◽  
Chunsheng Cai ◽  
Hui Peng ◽  
...  

In the present study, an alkaline solution, prepared by sodium silicate (Na2SiO3) and sodium hydroxide (NaOH), was used as an activator for the preparation of a metakaolin-based geopolymer with high compressive strength. The effects of the factors, including the modulus (SiO2/Na2O ratio) of the alkaline activator, activator concentration, curing temperature, and curing time on the mechanical properties of the geopolymer were examined using orthogonal tests. Test results showed that the concentration of the alkaline activator is the primary factor affecting the mechanical properties of the geopolymer, followed by the modulus of the alkaline activator. The compressive strength of the geopolymer increases with an increase in activator concentration and decrease in the modulus of the alkaline activator. Subsequently, the reaction degree of the geopolymer and the reaction products corresponding to various concentrations of the activator were investigated using microcalorimetric analysis, Fourier Transform Infrared (FT-IR) analysis, and Scanning electron microscopy-Energy Dispersive Spectrometer (SEM-EDS) analysis, and the mechanism of the activator concentration affecting the geopolymer properties was also studied. It was found that the hydrolysis reaction and the polymerization degree were improved with an increase in the activator concentration. When the activator concentration increased from 50% to 80%, the compressive strength of the geopolymer increased from 21.54 MPa to 99.89 MPa. In addition, the SEM images also showed that the reaction products with a higher activator concentration, had a denser and more homogeneous matrix than that of products with a lower activator concentration.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2501 ◽  
Author(s):  
Hongen Zhang ◽  
Lang Li ◽  
Tao Long ◽  
Prabir Sarker ◽  
Xiaoshuang Shi ◽  
...  

The influence of using cement on the residual properties of fly ash geopolymer concrete (FAGC) after exposure to high temperature of up to 800 °C was studied in terms of mass loss, residual compressive strength and microstructure. The mass loss was found to increase with the increase of exposure temperature, which is attributed to vaporization of water and dehydroxylation of sodium aluminosilicate hydrate (N-A-S-H) gels. The dehydroxylation of calcium silicate hydrate (C-S-H) gels and the disintegration of portlandite were responsible for higher mass loss ratio of FAGCs containing cement. The results showed that cement could increase compressive strength of FAGCs up to 200 °C, after which a significant reduction in residual strength was observed. It was found that FAGCs without cement yielded higher residual strength than the original strength after heating up to 600 °C. The observed increase of compressive strength up to 200 °C was attributed to the secondary geopolymerization which was evidenced in the scanning electronic microscopy (SEM) images.


2012 ◽  
Vol 476-478 ◽  
pp. 2173-2180 ◽  
Author(s):  
Mohd Mustafa Al Bakri Abdullah ◽  
Kamarudin Hussin ◽  
Mohammed Binhussain ◽  
Ismail Khairul Nizar ◽  
Rafiza Abd Razak ◽  
...  

The compressive strength and microstructural characteristics of fly ash based geopolymer with alkaline activator solution were investigated. The sodium hydroxide and sodium silicate were mixed together to form an alkaline activator. Three parameters including NaOH molarity, mix design (fly ash/alkaline activator ratio and Na2SiO3/NaOH ratio), and curing temperature were examined. The maximum strength of 71 MPa was obtained when the NaOH solution of 12M, fly ash/alkaline activator of 2.0, Na2SiO3/NaOH of 2.5 and curing temperature of 60°C were used at 7th days of testing. The results of SEM indicated that for geopolymer with highest strength, the structure was dense matrix and contains less unreacted fly ash with alkaline activator


2013 ◽  
Vol 421 ◽  
pp. 342-348 ◽  
Author(s):  
A.M. Mustafa Al Bakri ◽  
Omar A. Abdulkareem ◽  
H. Kamarudin ◽  
I. Khairul Nizar ◽  
A.R. Rafiza ◽  
...  

Fly ash-based geopolymers are new binding materials produced to replace the ordinary Portland cement (OPC) used in concrete. In this research, the effect of alkaline activators on the compressive strength and the microstructure of low-calcium (Class F) fly ash-based geopolymers were studied. Fly ash and the alkaline activator were mixed with alkaline activator to fly ash ratios of 0.30, 0.35, and 0.40 at a constant ratio of water glass (sodium silicate) to sodium hydroxide (NaOH). The alkaline activator solution was prepared by mixing water glass with a 15 M NaOH solution. The samples were cured at a temperature 70 °C for 24 hr and maintained at room temperature until the testing was conducted. The test results indicated that the compressive strength increased when the ratio of alkaline activator to fly ash was increased at 7 days. The ratio of 0.4 produced the maximum compressive strength, which was 8.61 MPa. This was due to high reaction rate between the fly ash and the alkaline activator solution. Morphology studies, conducted by SEM analysis of the geopolymer samples, indicated that geopolymers synthesized at a ratio of 0.4 also had the most homogeneous and less porous microstructures, which was attributed to the high dissolution of the fly ash particles in the alkaline activator solution. The microstructure appearance of geopolymers treated heat temperature of 400, 600 and 800°C, shows a sintering process takes place for unreacted fly ash microspheres. It was observed as an overall, the visible microcracks formed on the surface of the highest compressive strength geopolymers only, was due to loss of water during heating.


2013 ◽  
Vol 690-693 ◽  
pp. 1086-1090
Author(s):  
Jie Zhang ◽  
Qiong Qiong Li ◽  
Yu Qiang Xiong

Aluminous rocks from Xiuwen County, Guizhou are the main raw materials, mixed some kaolin mineral. Water glass and alkaline activators are used to product polymer materials, the main experimental indicators are the compressive strength. Here, the studies on amount of water glass and alkaline activator, solid-liquid ratio, amount of kaolin and effects on compressive strength of Geopolymer have been proceeded respectively. The result shows that: the highest compressive strength of geopolymers is17.94 Mpa, with aluminous rock 40g, solid-liquid ratio 2.2, water glass12g and alkali activator 2.01g, as well as kaolin 18.02g.


2017 ◽  
Vol 888 ◽  
pp. 184-187
Author(s):  
Salwa Ismail ◽  
Mohammad Faizal Mohd Razali ◽  
Izwan Johari ◽  
Zainal Arifin Ahmad ◽  
Shah Rizal Kasim

In this study, the geopolymer mortars were synthesized with fly ash (FA) and silica powder as aluminosilicate sources and a combination of sodium hydroxide (NaOH) solution, sodium silicate (Na2SiO3) solution and distilled water as alkaline activator. Commercial sago was used as a pore former in the mortars. The percentage of sago used were 10, 20 and 30 wt% of FA. The amount of added water used in each mixture was 5% by weight of FA, NaOH solution and Na2SiO3 solution. The formed geopolymer mortars were cured for 1, 3 and 7 days and sintered at 1000 °C. X-ray fluoresence (XRF) shown that FA contains higher amount of silica (SiO2) and alumina (Al2O3) which is important as aluminosilicate sources. The properties of the geopolymer mortars before and after sintered at 1000 °C have been investigated. The results show that geopolymer mortars with 10% of sago content with curing time of 7 days and sintered at 1000 °C give the highest compressive strength of 13.5 MPa.


Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 832 ◽  
Author(s):  
Jie Wu ◽  
Jing Li ◽  
Feng Rao ◽  
Wanzhong Yin

In this study, copper slag reprocessing tailings (CSRT) were synthesized into geopolymers with 40%, 50% and 60% metakaolin. The evolution of compressive strength and microstructures of CSRT-based geopolymers in a marine environment was investigated. Except for compressive strength measurement, the characterizations of X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM) were included. It was found that marine conditions changed the Si/Al ratio in the sodium-aluminosilicate-hydrate (N-A-S-H) gel backbone, promoted the geopolymerization process, led to more Q4(3Al), Q4(2Al) and Q4(1Al) gel formation and a higher compressive strength of the geopolymers. This provided a basis for the preparation of CSRT-based geopolymers into marine concrete.


2015 ◽  
Vol 1100 ◽  
pp. 44-49 ◽  
Author(s):  
Pavel Krivenko ◽  
Oleg Petropavlovsky ◽  
Vit Petranek ◽  
Vasiliy Pushkar ◽  
Grigorii Vozniuk

The paper discusses approaches to compositional build-up of high strength alkali activated cements made using water glass as alkaline activator represented by commercial products in a form of powder and liquid. The purpose was to study the influence of fineness of ground granulated blast-furnace slags, admixtures and additives, compatible with alkali activated cements, water glass and mode of manufacturing technology in order to reach high compressive strength (≥ 80 MPa at standard age (28 days)) and early strength (≥ 20 MPa after 3 h of hardening in normal conditions).


Minerals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 40 ◽  
Author(s):  
Vytautas Bocullo ◽  
Danutė Vaičiukynienė ◽  
Ramūnas Gečys ◽  
Mindaugas Daukšys

This research presents the influence of ordinary Portland cement (OPC) and/or water glass addition on fly ash alkali-activated mortar and concrete. The results show that fly ash (FA) concrete activated with a NaOH solution and water glass mixture had better resistance to freeze and thaw, carbonation, alkali-silica reaction (ASR) and developed higher compressive strength and static elastic modulus compared with the FA concrete activated only with an NaOH solution. The addition of OPC contributes to the development of a denser microstructure of alkali activated concrete (AAC) samples. In the presence of water glass and OPC, the compressive strength (52.60 MPa) of the samples increased more than two times as compared with the reference sample (21.36 MPa) without OPC and water glass. The combination of OPC and water glass showed the increased strength and enhanced durability of AAC. The samples were more resistant to freeze and thaw, ASR, and carbonation.


Sign in / Sign up

Export Citation Format

Share Document