scholarly journals Ionic Surfactant Enhancement of Clay Properties for Heavy Metals Adsorption: Kinetics and Isotherms

2021 ◽  
Vol 21 (4) ◽  
pp. 825
Author(s):  
Adekeye Damilola Kayode ◽  
Asaolu Samuel Sunday ◽  
Adefemi Samuel Oluyemi ◽  
Ibigbami Olayinka Abidemi ◽  
Akinsola Abiodun Folasade ◽  
...  

The global health problems arising from ingesting toxic metals necessitate the quest for developing efficient materials for their remediation. Surface properties of raw kaolinite clay collected from Ire-Ekiti, South-western Nigeria, were improved by modification using sodium dodecyl sulphate (SDS) for the adsorptive removal of Pb, Cr, Ni and Cu from their respective aqueous solution. The raw and modified clays were characterized by X-ray fluorescence, Fourier transformed infrared spectrometry, Scanning electron microscope coupled with EDX and Particle induced x-ray emission technique. A batch adsorption study was used to examine the performance efficiency of the modified clay. Optimization of adsorption conditions like temperature, particle size, concentration, agitation time and pH was performed. The clay after modification showed improved surface properties such as increased pore diameter and number. Freundlich, Langmuir and Temkin isotherm models were applied to explicate the adsorption processes, while Pseudo-First order, Pseudo-Second order and the Elovich kinetic models were used to predict possible mechanisms driving the adsorption processes. The adsorption processes driven by chemical mechanisms involved series of complex mechanisms that include ion exchange, direct bonding and surface complexation other than precipitation. The percentage removal of the metals by the modified clay soil reached the values of 98.53, 94.50, 73.82, and 80.40 for Pb, Cu, Ni and Cr.

2003 ◽  
Vol 21 (5) ◽  
pp. 451-462 ◽  
Author(s):  
Sameer Al-Asheh ◽  
Fawzi Banat ◽  
Leena Abu-Aitah

An improvement in the adsorption capacity of naturally available bentonite towards water pollutants such as Methylene Blue dye (MBD) is certainly needed. For this purpose, sodium bentonite was activated by two methods: (1) treatment with sodium dodecyl sulphate (SDS) as an ionic surfactant and (2) thermal treatment in an oven operated at 850°C. Batch adsorption tests were carried out on removing MBD from aqueous solution using the above-mentioned bentonites. It was found that the effectiveness of bentonites towards MBD removal was in the following order: thermal-bentonite > SDS-bentonite > natural bentonite. X-Ray diffraction analysis showed that an increase in the microscopic bentonite platelets on treatment with SDS was the reason behind the higher uptake of MBD. An increase in sorbent concentration or initial pH value of the solutions resulted in a greater removal of MBD from the solution. An increase in temperature led to an increase in MBD uptake by the bentonites studied in this work. The Freundlich isotherm model was employed and found to represent the experimental data well.


2016 ◽  
Vol 73 (8) ◽  
pp. 2007-2016 ◽  
Author(s):  
N. Contreras Olivares ◽  
M. C. Díaz-Nava ◽  
M. Solache-Ríos

The sorption processes of red 5 (R5) and yellow 5 (Y5) dyes by iron modified and sodium bentonite in aqueous solutions was evaluated. The modified clay was prepared, conditioned and characterized. The sodium clay did not remove any of either dye. The sorption kinetics and isotherms of R5 and Y5 dyes by iron modified clay were determined. The maximum removal percentages achieved were 97% and 98% for R5 and Y5, respectively, and a contact time of 72 h; the experimental data were best adjusted to Ho model. The isotherms of both dyes were best adjusted to the Langmuir model and the maximum adsorption capacities of the modified clay were 11.26 mg/g and 5.28 mg/g for R5 and Y5, respectively. These results indicate that adsorption processes have a high probability to be described as chemisorption on a homogeneous material. Temperature range between 283 and 213 K does not affect the adsorption of Y5 by the iron modified clay, but the adsorption process of R5 was affected, and the thermodynamic parameters could be calculated, which indicate a chemisorption mechanism.


2022 ◽  
Vol 23 (1) ◽  
pp. 294-309
Author(s):  
Nur Izzaty Syahirah Baharudin ◽  
Noraini Mohamed Noor ◽  
Ezzat Chan Abdullah ◽  
Raihan Othman ◽  
Mubarak Nasibab Mujawar

Heavy metals are hazardous to health at certain levels. Currently, heavy metals are removed by physicochemical treatments, such as adsorption, flotation, and electrochemical deposition, and also biological treatments, such as algal biofilm reactor and anaerobic ammonium oxidation. In this study, magnetic biochar was produced to enhance the effectiveness and performance of the adsorbent for heavy metal removal. This study aimed to synthesise high-performance magnetic biochar, to determine the optimum parameters and conditions for high yield of magnetic biochar and high removal of cadmium (Cd2+) from aqueous solution, and to determine the adsorption kinetics and isotherms for Cd2+ removal. Nickel oxide (NiO)-impregnated sugarcane bagasse was subjected to slow pyrolysis to produce magnetic biochar. The impregnated metal, pyrolysis temperature, and pyrolysis time were varied to determine the optimum parameters and conditions to produce high-performance magnetic biochar. The removal of Cd2+ from aqueous solution and batch adsorption study were conducted. The synthesised magnetic biochar was characterised using field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, Fourier transform infrared (FTIR), and vibrating sample magnetometer (VSM). The adsorption data agreed well with the pseudo-second-order model and followed the Langmuir isotherm model. This study achieved 88.47% removal efficiency of Cd2+ from aqueous solution. Thus, the removal of this heavy metal as a human carcinogen reduces the hazardous effects on human health and reduces the toxicity in the environment. ABSTRAK: Logam berat adalah berbahaya bagi kesihatan di peringkat tertentu. Pada masa ini, logam berat disingkirkan melalui rawatan fizikokimia, seperti penyerapan, pengapungan, dan deposit elektrokimia, dan rawatan biologikal, seperti reaktor biofilem alga dan oksidasi ammonium anerobik. Kajian ini menghasilkan biochar magnetik bagi meningkatkan keberkesanan dan prestasi penyerapan penyingkiran logam berat. Kajian ini bertujuan bagi mengsintesis biochar magnetik pada prestasi tinggi, bagi menghasilkan parameter optimum dan keadaan pengeluaran tinggi biochar magnetik dan penyingkiran tinggi kadmium (Cd2+) daripada larutan akues, dan bagi mendapatkan penyerapan kinetik dan isoterma penyingkiran Cd2+. Nikel oksida (NiO)-impregnat hampas tebu adalah berdasarkan pirolisis perlahan bagi menghasilkan biochar magnetik. Logam yang terimpregnat, suhu pirolisis dan tempoh pirolisis dipelbagaikan bagi mendapatkan parameter optimum dan keadaan bagi menghasilkan biochar magnetik berprestasi-tinggi. Penyingkiran Cd2+ daripada larutan akues dan kajian penyerapan berkumpulan telah dibuat. Biochar magnetik yang disentisis diklasifikasikan menggunakan mikroskopi elektron imbasan medan-pancaran (FESEM), tenaga sebaran X-ray (EDX), pembelauan X-ray (XRD), kawasan permukaan Brunauer-Emmett-Teller (BET), Penjelmaan Fourier inframerah (FTIR), dan sampel getaran magnetometer (VSM). Data penyerapan menunjukkan persetujuan dengan model aturan-kedua-pseudo dan mengikuti model isoterma Langmuir. Kajian ini mencapai 88.47% keberkesanan penyingkiran Cd2+ daripada larutan akues. Oleh itu, penyingkiran logam berat ini sebagai karsinogen manusia mengurangkan kesan teruk pada kesihatan manusia dan pengurangan toksik pada alam sekitar.


2019 ◽  
Vol 79 (11) ◽  
pp. 2175-2184 ◽  
Author(s):  
Dan Liu ◽  
Zhanbin Huang ◽  
Shuhui Men ◽  
Zhen Huang ◽  
Chunrong Wang

Abstract The aim of this study was to reveal the mechanism of nitrogen and phosphorus adsorption by humic acids (HAs). HAs were extracted from weathered coal and used as adsorbents of urea-N and phosphate-P in water. The effect of different factors was considered, such as the initial concentration of urea-N and phosphate-P, temperature, and pH. The surface characteristics of the HAs were analyzed by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier transform infrared spectrometry. The results of batch adsorption experiments showed high effectiveness for nitrogen adsorption, the kinetics fitted with the pseudo-second-order model, and the isotherm followed the Langmuir model. For phosphorus adsorption, the data fitted well with the Weber and Morris model and the adsorption isotherms followed both the Langmuir and Freundlich isotherm models. The experimental results indicated that the adsorption behavior of HAs was both an endothermic and spontaneous process. These findings can be used as a reference for the mitigation of non-point source pollution and the application of fertilizer in agriculture.


2020 ◽  
Vol 10 (1) ◽  
pp. 46-61 ◽  
Author(s):  
Jihane Assaoui ◽  
Zineb Hatim ◽  
Abdelmoula Kheribeche

A novel adsorbent was obtained by a facile precipitation method and was used for fluoride removal from aqueous solution. Mineralogical and physicochemical characterization of the adsorbent was carried out by X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF), Energy Dispersive X-Ray attached to Scanning Electron Microscopy (SEM-EDX), BET Specific Surface Area(SSAN2BET) analysis and Fourier-Transform Infrared Spectrometry (FTIR). The effect of various operational parameters such as contact time, initial fluoride concentration, (20-160 mg L-1) adsorbent dose (1-6 g L-1) and initial pH solution (3-11) was evaluated in batch procedures at room temperature (25±2°C). The results of the batch adsorption experiments proved that 24 h of contact time was sufficient for attaining equilibrium. The maximum wastewater defluoridation (84.91%) was obtained for 40 mg L-1 and 3 g L-1 of initial fluoride concentration and adsorbent dose, respectively. It appears that there was no significant effect on the F- removal over a wide range of pH 3-11. Kinetic studies revealed that fluoride adsorption fitted well to pseudo-second-order. The adsorption isotherm of fluoride sorption indicated that the maximum adsorption capacity was noted to be 43.29 mg g-1. Batch adsorption data was better described by Langmuir isotherm confirming monolayer adsorption with homogenous distribution of active sites and without interaction between adsorbed molecules. The obtained results indicated that the ion exchange is probably the main mechanism involved in the F- adsorption by the aluminium-based adsorbent.


2016 ◽  
Vol 73 (9) ◽  
pp. 2199-2210 ◽  
Author(s):  
Hamou Moussout ◽  
Hammou Ahlafi ◽  
Mustapha Aazza ◽  
Omar Zegaoui ◽  
Charaf El Akili

Chitosan (CS) and nanocomposite 5%bentonite/chitosan (5%Bt/CS) prepared from the natural biopolymer CS were tested to remove Cu(II) ions using a batch adsorption experiment at various temperatures (25, 35 and 45°C). X-ray diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis/differential thermal analysis (TGA/DTA) were used in CS and the nanocomposite characterisation. This confirmed the exfoliation of bentonite (Bt) to form the nanocomposite. The adsorption kinetics of copper on both solids was found to follow a pseudo-second-order law at each studied temperature. The Cu(II) adsorption capacity increased as the temperature increased from 25 to 45°C for nanocomposite adsorbent but slightly increased for CS. The data were confronted to the nonlinear Langmuir, Freundlich and Redlich–Peterson models. It was found that the experimental data fitted very well the Langmuir isotherm over the whole temperature and concentration ranges. The maximum monolayer adsorption capacity for the Cu(II) was 404–422 mg/g for CS and 282–337 mg/g for 5%Bt/CS at 25–45°C. The thermodynamic study showed that the adsorption process was spontaneous and endothermic. The complexation of Cu(II) with NH2 and C = O groups as active sites was found to be the main mechanism in the adsorption processes.


2016 ◽  
Vol 54 (12) ◽  
pp. 1561-1570 ◽  
Author(s):  
Ajit K Sharma ◽  
Byeong-Kyu Lee

In this work, a surfactant-aided TiO2–MgO nanocomposite (Ti-M-S) was successfully synthesized by a sol-gel process with the aid of sodium dodecyl sulfate as a structure-directing anionic surfactant. The results demonstrated the effectiveness of this approach for controlling both the amount and the distribution of MgO nanoparticles within the TiO2 framework after calcination. The photocatalytic activity of the synthesized nanocomposite for degradation of methyl orange (MO) and methylene blue (MB) dyes used as a model wastewater contaminant was investigated under visible light irradiation. The synthesized nanocomposite was systematically characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy/energy-dispersive X-ray (SEM/EDX) analysis. The decolorization results revealed that the Ti-M-S1 (with an anionic surfactant: sodium dodecyl sulfate) and Ti-M-S2 (with a non-ionic surfactant: Triton X-100) nanocomposites showed much more photocatalytic activity than the pure TiO2 did under visible light. MB and MO dye removal efficiencies of 82.4% and 77.8 %, respectively, were achieved by Ti-M-S1 (1%) within about 120 min and no further changes in the uptake were observed up to 24 h. This confirmed the suitability of the synthesized nanocomposite for use as a photocatalyst under visible light with the added advantage of increasing the versatility of potential applications for TiO2 photocatalysts.


2022 ◽  
Author(s):  
Sabah M. Abdelbasir ◽  
Mohamed A. Abdel Khalek

Abstract Blast furnace slag (BFS) is considered a cheap sorbent for the get rid of Co2+ and Pb2+ ions from an aqueous medium. The slag is characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), N2 adsorption-desorption isotherms, energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), and zeta potential. The removal of Co2+ and Pb2+ ions was carried out using batch adsorption experiments from an aqueous medium. The influence of several variables as pH, duration, sorbent quantity, temperature, and preliminary ions concentration was considered. The isotherm, kinetic, thermodynamic, and recyclability were also conducted. The maximum uptake capacity for Co2+ and Pb2+ was 43.8 and 30.2 mg g-1 achieved at pH 6 after 60 min. contact duration. The adsorption kinetics and isotherms of BFS for Co2+ and Pb2+ fitted well to Avrami and Freundlich models, respectively. The main sorption mechanism between BFS and the metal ions was ion exchange. The regeneration of the used slag was studied for reuse many cycles. In terms of economics and scalability, the treatment with the unmodified BFS has great potentials.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Sabarish Radoor ◽  
Jasila Karayil ◽  
Aswathy Jayakumar ◽  
Jyotishkumar Parameswaranpillai ◽  
Suchart Siengchin

AbstractIn the present work, we have developed a mesoporous silicalite-1 using CMC as a template for the removal of MB from aqueous solution. The synthesized silicalite-1 were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Energy-dispersive X-ray spectroscopy (EDAX) and N2 adsorption–desorption isotherm (BET). XRD and FT-IR analysis confirmed the formation of crystallinity and development of MFI structure in the mesoporous silicalite-1. The adsorption of MB dye on mesoporous silicalite-1 was conducted by batch adsorption method. The effect of various parameters such as adsorbent dosage, initial dye concentration, contact time and temperature on the dye uptake ability of silicalite-1 was investigated. The operating parameters for the maximum adsorption are silicalite-1 dosage (0.1 wt%), contact time (240 min), initial dye concentration (10 ppm) and temperature (30 ℃). The MB dye removal onto mesoporous silicalite-1 followed pseudo-second-order kinetic and Freundlich isotherm. The silicalite-1 exhibits 86% removal efficiency even after six adsorption–desorption cycle. Therefore, the developed mesoporous silicalite-1 is an effective eco-friendly adsorbent for MB dye removal from aqueous environment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Umar Shah ◽  
Deepak Dwivedi ◽  
Mark Hackett ◽  
Hani Al-Salami ◽  
Ranjeet P. Utikar ◽  
...  

AbstractKafirin, the hydrophobic prolamin storage protein in sorghum grain is enriched when the grain is used for bioethanol production to give dried distillers grain with solubles (DGGS) as a by-product. There is great interest in DDGS kafirin as a new source for biomaterials. There is however a lack of fundamental understanding of how the physicochemical properties of DDGS kafirin having been exposed to the high temperature conditions during ethanol production, compare to kafirin made directly from the grain. An understanding of these properties is required to catalyse the utilisation of DDGS kafirin for biomaterial applications. The aim of this study was to extract kafirin directly from sorghum grain and from DDGS derived from the same grain and, then perform a comparative investigation of the physicochemical properties of these kafirins in terms of: polypeptide profile by sodium-dodecyl sulphate polyacrylamide gel electrophoresis; secondary structure by Fourier transform infra-red spectroscopy and x-ray diffraction, self-assembly behaviour by small-angle x-ray scattering, surface morphology by scanning electron microscopy and surface chemical properties by energy dispersive x-ray spectroscopy. DDGS kafirin was found to have very similar polypeptide profile as grain kafirin but contained altered secondary structure with increased levels of β-sheets. The structure morphology showed surface fractals and surface elemental composition suggesting enhanced reactivity with possibility to endow interfacial wettability. These properties of DDGS kafirin may provide it with unique functionality and thus open up opportunities for it to be used as a novel food grade biomaterial.


Sign in / Sign up

Export Citation Format

Share Document