scholarly journals EFFECT OF ANTI-BIOFILM POTENTIAL OF DIFFERENT MEDICINAL PLANTS: REVIEW

Author(s):  
M Gayathri ◽  
Abinaya Man

Medicinal plant products are the natural products which have been very useful for human to cure various ailments and as an alternative medicine for conventional therapy. However, bacteria in natural environments are mainly exist in biofilm formation and are more susceptible to cause severe infections than the planktonic counterparts. Biofilm is associated with impaired epithelization and granulation tissue formation and also promotes a low-grade inflammatory response that interferes with wound healing. Since the infection caused by biofilm is often very difficult to treat, there is a need to find a new active anti-biofilm agent. In recent past, interest in the therapeutic and nutritional properties of various medicinal plants and its natural phytochemical compounds which have established for their anti-biofilm activities has been increased gradually. In this review, we have described various aerial parts of medicinal plants which have anti-biofilm effect which was evaluated against biofilm producing different bacterial pathogens and antimicrobial agents which are responsible to cure wound healing.Keywords: Medicinal plants, Phytochemical, Anti-biofilm activity.

2020 ◽  
Vol 26 (24) ◽  
pp. 2807-2816 ◽  
Author(s):  
Yun Su Jang ◽  
Tímea Mosolygó

: Bacteria within biofilms are more resistant to antibiotics and chemical agents than planktonic bacteria in suspension. Treatment of biofilm-associated infections inevitably involves high dosages and prolonged courses of antimicrobial agents; therefore, there is a potential risk of the development of antimicrobial resistance (AMR). Due to the high prevalence of AMR and its association with biofilm formation, investigation of more effective anti-biofilm agents is required. : From ancient times, herbs and spices have been used to preserve foods, and their antimicrobial, anti-biofilm and anti-quorum sensing properties are well known. Moreover, phytochemicals exert their anti-biofilm properties at sub-inhibitory concentrations without providing the opportunity for the emergence of resistant bacteria or harming the host microbiota. : With increasing scientific attention to natural phytotherapeutic agents, numerous experimental investigations have been conducted in recent years. The present paper aims to review the articles published in the last decade in order to summarize a) our current understanding of AMR in correlation with biofilm formation and b) the evidence of phytotherapeutic agents against bacterial biofilms and their mechanisms of action. The main focus has been put on herbal anti-biofilm compounds tested to date in association with Staphylococcus aureus, Pseudomonas aeruginosa and food-borne pathogens (Salmonella spp., Campylobacter spp., Listeria monocytogenes and Escherichia coli).


2020 ◽  
Vol 20 (24) ◽  
pp. 2186-2191
Author(s):  
Lialyz Soares Pereira André ◽  
Renata Freire Alves Pereira ◽  
Felipe Ramos Pinheiro ◽  
Aislan Cristina Rheder Fagundes Pascoal ◽  
Vitor Francisco Ferreira ◽  
...  

Background: Resistance to antimicrobial agents is a major public health problem, being Staphylococcus aureus prevalent in infections in hospital and community environments and, admittedly, related to biofilm formation in biotic and abiotic surfaces. Biofilms form a complex and structured community of microorganisms surrounded by an extracellular matrix adhering to each other and to a surface that gives them even more protection from and resistance against the action of antimicrobial agents, as well as against host defenses. Methods: Aiming to control and solve these problems, our study sought to evaluate the action of 1,2,3- triazoles against a Staphylococcus aureus isolate in planktonic and in the biofilm form, evaluating the activity of this triazole through Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) tests. We have also performed cytotoxic evaluation and Scanning Electron Microscopy (SEM) of the biofilms under the treatment of the compound. The 1,2,3-triazole DAN 49 showed bacteriostatic and bactericidal activity (MIC and MBC 128 μg/mL). In addition, its presence interfered with the biofilm formation stage (1/2 MIC, p <0.000001) and demonstrated an effect on young preformed biofilm (2 MICs, p <0.05). Results: Scanning Electron Microscopy images showed a reduction in the cell population and the appearance of deformations on the surface of some bacteria in the biofilm under treatment with the compound. Conclusion: Therefore, it was possible to conclude the promising anti-biofilm potential of 1,2,3-triazole, demonstrating the importance of the synthesis of new compounds with biological activity.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 625
Author(s):  
Fatma Y. Ahmed ◽  
Usama Farghaly Aly ◽  
Rehab Mahmoud Abd El-Baky ◽  
Nancy G. F. M. Waly

Most of the infections caused by multi-drug resistant (MDR) P. aeruginosa strains are extremely difficult to be treated with conventional antibiotics. Biofilm formation and efflux pumps are recognized as the major antibiotic resistance mechanisms in MDR P. aeruginosa. Biofilm formation by P. aeruginosa depends mainly on the cell-to-cell communication quorum-sensing (QS) systems. Titanium dioxide nanoparticles (TDN) have been used as antimicrobial agents against several microorganisms but have not been reported as an anti-QS agent. This study aims to evaluate the impact of titanium dioxide nanoparticles (TDN) on QS and efflux pump genes expression in MDR P. aeruginosa isolates. The antimicrobial susceptibility of 25 P. aeruginosa isolates were performed by Kirby–Bauer disc diffusion. Titanium dioxide nanoparticles (TDN) were prepared by the sol gel method and characterized by different techniques (DLS, HR-TEM, XRD, and FTIR). The expression of efflux pumps in the MDR isolates was detected by the determination of MICs of different antibiotics in the presence and absence of carbonyl cyanide m-chlorophenylhydrazone (CCCP). Biofilm formation and the antibiofilm activity of TDN were determined using the tissue culture plate method. The effects of TDN on the expression of QS genes and efflux pump genes were tested using real-time polymerase chain reaction (RT-PCR). The average size of the TDNs was 64.77 nm. It was found that TDN showed a significant reduction in biofilm formation (96%) and represented superior antibacterial activity against P. aeruginosa strains in comparison to titanium dioxide powder. In addition, the use of TDN alone or in combination with antibiotics resulted in significant downregulation of the efflux pump genes (MexY, MexB, MexA) and QS-regulated genes (lasR, lasI, rhll, rhlR, pqsA, pqsR) in comparison to the untreated isolate. TDN can increase the therapeutic efficacy of traditional antibiotics by affecting efflux pump expression and quorum-sensing genes controlling biofilm production.


2021 ◽  
Vol 10 (13) ◽  
pp. 2951
Author(s):  
Maria Baldovin ◽  
Diego Cazzador ◽  
Claudia Zanotti ◽  
Giuliana Frasson ◽  
Athanasios Saratziotis ◽  
...  

Bilateral choanal atresia (CA) is a rare congenital malformation frequently associated with other anomalies. CHARGE association is closely linked to bilateral CA. The aim of this study was to describe the outcomes of the endoscopic repair in bilateral CA, and to assess the role of postoperative nasal stenting in two cohorts of CHARGE-associated and non-syndromic CA. Thirty-nine children were retrospectively analyzed (16 patients had CHARGE-associated CA). The rate of postoperative neochoanal restenosis was 31.3% in the CHARGE population, and 47.8% in the non-syndromic CA cohort. Data on postoperative synechiae and granulation tissue formation, need for endonasal toilette and dilation procedures, and number of procedures per patient were presented. Stent positioning led to a higher number of postoperative dilation procedures per patient in the non-syndromic cohort (p = 0.018), and to a higher rate of restenosis both in the CHARGE-associated, and non-syndromic CA populations. Children with CHARGE-associated and non-syndromic bilateral CA benefitted from endonasal endoscopic CA correction. The postoperative application of an endonasal stent should be carefully evaluated.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1140
Author(s):  
Silvana Alfei ◽  
Gabriella Piatti ◽  
Debora Caviglia ◽  
Anna Maria Schito

The growing resistance of bacteria to current chemotherapy is a global concern that urgently requires new and effective antimicrobial agents, aimed at curing untreatable infection, reducing unacceptable healthcare costs and human mortality. Cationic polymers, that mimic antimicrobial cationic peptides, represent promising broad-spectrum agents, being less susceptible to develop resistance than low molecular weight antibiotics. We, thus, designed, and herein report, the synthesis and physicochemical characterization of a water-soluble cationic copolymer (P5), obtained by copolymerizing the laboratory-made monomer 4-ammoniumbuthylstyrene hydrochloride with di-methyl-acrylamide as uncharged diluent. The antibacterial activity of P5 was assessed against several multi-drug-resistant clinical isolates of both Gram-positive and Gram-negative species. Except for strains characterized by modifications of the membrane charge, most of the tested isolates were sensible to the new molecule. P5 showed remarkable antibacterial activity against several isolates of genera Enterococcus, Staphylococcus, Pseudomonas, Klebsiella, and against Escherichia coli, Acinetobacter baumannii and Stenotrophomonas maltophilia, displaying a minimum MIC value of 3.15 µM. In time-killing and turbidimetric studies, P5 displayed a rapid non-lytic bactericidal activity. Due to its water-solubility and wide bactericidal spectrum, P5 could represent a promising novel agent capable of overcoming severe infections sustained by bacteria resistant the presently available antibiotics.


2021 ◽  
pp. 088391152110142
Author(s):  
Velu Gomathy ◽  
Venkatesan Manigandan ◽  
Narasimman Vignesh ◽  
Aavula Thabitha ◽  
Ramachandran Saravanan

Biofilms play a key role in infectious diseases, as they may form on the surface and persist after treatment with various antimicrobial agents. The Staphylococcus aureus, Klebsiella pneumoniae, S. typhimurium, P. aeruginosa, and Escherichia coli most frequently associated with medical devices. Chitosan sulphate from marine litter (SCH-MW) was extracted and the mineral components were determined using atomic absorption spectroscopy (AAS). The degree of deacetylation (DA) of SCH was predicted 50% and 33.3% in crab and shrimp waste respectively. The elucidation of the structure of the SCH-MW was portrayed using FT-IR and 1H-NMR spectroscopy. The molecular mass of SCH-MW was determined with Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF). The teratogenicity of SCH-MW was characterized by the zebrafish embryo (ZFE) model. Antimicrobial activity of SCH-MW was tested with the agar well diffusion method; the inhibitory effect of SCH-MW on biofilm formation was assessed in 96 flat well polystyrene plates. The result revealed that a low concentration of crab-sulfated chitosan inhibited bacterial growth and significantly reduced the anti-biofilm activity of gram-negative and gram-positive bacteria relatively to shrimp. It is potentially against the biofilm formation of pathogenic bacteria.


2016 ◽  
Vol 91 (2) ◽  
pp. 223-225 ◽  
Author(s):  
Daniela de Almeida Figueiras ◽  
Ticiana Batista Ramos ◽  
Ayana Karla de Oliveira Ferreira Marinho ◽  
Milena Soneley Mendonça Bezerra ◽  
Renata Cavalcanti Cauas

2018 ◽  
Vol 54 (3) ◽  
pp. 125-131 ◽  
Author(s):  
Vassiliki Tsioli ◽  
Pagona G. Gouletsou ◽  
Apostolos D. Galatos ◽  
Dimitra Psalla ◽  
Antonios Lymperis ◽  
...  

ABSTRACT The objective of the present study was to evaluate the effect of a hydrocolloid dressing on second intention wound healing in cats. Two full-thickness skin wounds, measuring 2 × 2 cm, were created on both sides of the dorsal midline of 10 cats; bilaterally, one randomly selected wound was bandaged with a hydrocolloid dressing and the second one (control) with a semiocclusive pad. Subjective clinical evaluation of granulation tissue formation, of the quantity and nature of wound exudate, and planimetry were performed on the right-side wounds, and histological examination on the left. No significant differences in subjective clinical evaluation or in planimetry were observed between the hydrocolloid-treated wounds and controls. Most wounds had serous or absence of exudate (41.25% and 25%, respectively), whereas purulent exudate was observed in 7.5% of wounds. Edema was significantly increased in the hydrocolloid-treated wounds compared with controls on day 7 but no significant differences in the other histological variables were observed.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1710
Author(s):  
Mahmoud Emam ◽  
Doaa R. Abdel-Haleem ◽  
Maha M. Salem ◽  
Lina Jamil M. Abdel-Hafez ◽  
Rasha R. Abdel Latif ◽  
...  

Infections associated with the emergence of multidrug resistance and mosquito-borne diseases have resulted in serious crises associated with high mortality and left behind a huge socioeconomic burden. The chemical investigation of Lavandulacoronopifolia aerial parts extract using HPLC–MS/MS led to the tentative identification of 46 compounds belonging to phenolic acids, flavonoids and their glycosides, and biflavonoids. The extract displayed larvicidal activity against Culex pipiens larvae (LC50 = 29.08 µg/mL at 72 h). It significantly inhibited cytochrome P-450 monooxygenase (CYP450), acetylcholinesterase (AChE), and carboxylesterase (CarE) enzymes with the comparable pattern to the control group, which could explain the mode of larvae toxification. The extract also inhibited the biofilm formation of Pseudomonas aeruginosa by 17–38% at different Minimum Inhibitory Concentrations (MICs) (0.5–0.125 mg/mL) while the activity was doubled when combined with ciprofloxacin (ratio = 1:1 v:v). In conclusion, the wild plant, L.coronopifolia, can be considered a promising natural source against resistant bacteria and infectious carriers.


Sign in / Sign up

Export Citation Format

Share Document