scholarly journals INSULIN SECRETAGOGUE EFFECT OF ROOTS OF RAVENALA MADAGASCARIENSIS SONN. - AN IN VITRO STUDY

Author(s):  
SAKTHI PRIYADARSINI S ◽  
KUMAR PR ◽  
ABHISHEK ANAND ◽  
DEVENDIRAN B ◽  
VENKAT S KADIYAM ◽  
...  

Objective: The objective of this study was to establish the cytotoxicity profile and to evaluate the insulin secretagogue effect of ethanolic root extract of Ravenala madagascariensis Sonn. Methods: The cell viability of rat insulinoma 5F (RIN5F) cell lines over the treatment of plant extract was assessed by 3-(4,5-dimethyl-2-thiazolyl)- 2,5-diphenyltetrazolium bromide assay. The insulin-releasing effect was evaluated by insulin secretion assay over RIN5F cell lines by enzyme-linked immunosorbent assay. Results: The ethanolic extract of the roots of R. madagascariensis Sonn. showed negligible cytotoxicity at 20–40 μg/ml, and hence, concentrations up to 40 μg/ml were used in insulin secretion assay. The ethanolic root extract at 20 and 40 μg/ml significantly (p<0.05 compared to control) stimulated the insulin release in a dose-dependent manner even in the presence of glucose at lower and higher concentrations (5 and 10 mM). Conclusion: Thus, our results validate its traditional claim in the treatment of diabetes by stimulating the secretion of insulin, thereby suggesting a possible mechanism of its antidiabetic effect.

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3886
Author(s):  
Stefania Sut ◽  
Irene Ferrarese ◽  
Maria Giovanna Lupo ◽  
Nicola De Zordi ◽  
Elisa Tripicchio ◽  
...  

In the present study the ability of supercritical carbon dioxide (SCO2) extracts of M. longifolia L. leaves to modulate low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) expression was evaluated in cultured human hepatoma cell lines Huh7 and HepG2. Two SCO2 extracts, one oil (ML-SCO2) and a semisolid (MW-SCO2), were subjected to detailed chemical characterization by mono- and bidimensional nuclear magnetic resonance (1D, 2D-NMR), gas chromatography coupled with mass spectrometry (GC-MS) and liquid chromatography coupled with mass spectrometry (LC-MS). Chemical analysis revealed significant amounts of fatty acids, phytosterols and terpenoids. ML-SCO2 was able to induce LDLR expression at a dose of 60 µg/mL in HuH7 and HepG2 cell lines. Furthermore, ML-SCO2 reduced PCSK9 secretion in a concentration-dependent manner in both cell lines. Piperitone oxide, the most abundant compound of the volatile constituent of ML-SCO2 (27% w/w), was isolated and tested for the same targets, showing a very effective reduction of PCSK9 expression. The overall results revealed the opportunity to obtain a new nutraceutical ingredient with a high amount of phytosterols and terpenoids using the SCO2 extraction of M. longifolia L., a very well-known botanical species used as food. Furthermore, for the first time we report the high activity of piperitone oxide in the reduction of PCSK9 expression.


2021 ◽  
pp. 1
Author(s):  
Renuka Ammanagi ◽  
Vijayalakshmi Kotrashetti ◽  
Vijay Kumbar ◽  
Kishore Bhat ◽  
Sheethal Sanikop ◽  
...  

2010 ◽  
Vol 34 (2) ◽  
pp. 30-38
Author(s):  
Zainab R. Zghair

This study was designed to evaluate the anticancer, effects of the ethanolic (EE), cold aqueous (CAE), and hot aqueous (HAE) extracts of Sonchus oleraceus on cancer cell lines (in vitro). In vitro study was performed on three cancer cell lines (murine mammary adenocarcinoma AMN-3 cell line, laryngeal carcinoma Hep-2 cell line) and rat embryogenic fibroblast (REF) as normal cell line. Periods of exposure of cell lines were measured at 24, 48, and 72-hr in a microtitration plate under complete sterile conditions. Different concentrations starting from (78.125 to 10000) μg/ml of two fold dilution for each extract were prepared and tested on each cell line, with three replicates for each concentration. The three extracts showed concentration and time dependence with growth inhibitory effects, and the highest effect was obtained from ethanolic extract at higher concentrations after 48 hr. of exposures on both AMN3 and Hep-2 cell lines, while the cytotoxic effect of both cold aqueous and hot aqueous extracts on AMN-3 and Hep-2 cell lines exhibited that the higher concentrations gave a significantly (P<0.05) and the higher inhibition growth rate of cells were increased at 24 hrs.Conclusion: These results suggest that the cytotoxic concentrations of Sonchus oleraceus extracts showed variation in values among cell lines according to cell types in vitro.


2021 ◽  
Vol 12 (3) ◽  
pp. 674-683
Author(s):  
Sheetal Sanikop ◽  
Kishore Bhat ◽  
Vijayalakshmi Kotrashetti ◽  
Vijay Kumbar ◽  
Renuka Ammanagi ◽  
...  

Cloves (Syzygium aromaticum) as been used as traditional medicine for many years and they possess antibacterial, antifungal and antiviral properties. Clove is known for its anticancer property on various cancer cell lines and is well established, but its anticancer effect on OSCC cell lines is less known.  Aim of the study was to determine the anticancer and antioxidant effect of Syzygium aromaticum extract on OSCC cell lines (KB cell lines) and compare the same with normal mouse fibroblasts cell lines (L292 cell lines). KB cell lines and L292 cell lines were commercially obtained.  Clove was obtained from local market and ethanolic extract (EC) of clove was prepared. Anticancer activity was assessed by MTT, neutral red, DAPI and Double staining assay and antioxidant assay was carried out by FRAP, PM and DPPH assay. The antioxidant property of EC of clove increased with increase in the concentration in a dose dependent manner. Both MTT and Neutral Red assay showed increase in cell death with increase in concentration of EC of clove. Double staining and DAPI showed increase in cell death when treated with EC of clove. The anticancer and antioxidant activity of EC of clove was comparable with standard drug used in the assay. This in vitro study demonstrates effective anticancer and antioxidant activity on KB cell lines when compared to standard control. However, further studies are to be conducted in order to characterize other potential antitumor components of the clove, so that it can be used as therapeutic agent in treating oral carcinoma.


2019 ◽  
Vol 7 (4) ◽  
pp. 91-96
Author(s):  
Isra'a Al-sobhi ◽  
◽  
Rawan Al-Ghabban ◽  
Soad Shaker Ali ◽  
Jehan Al-Amri ◽  
...  

2021 ◽  
Vol 22 (13) ◽  
pp. 6785
Author(s):  
Valeria Sogos ◽  
Paola Caria ◽  
Clara Porcedda ◽  
Rafaela Mostallino ◽  
Franca Piras ◽  
...  

Novel psychoactive substances (NPS) are synthetic substances belonging to diverse groups, designed to mimic the effects of scheduled drugs, resulting in altered toxicity and potency. Up to now, information available on the pharmacology and toxicology of these new substances is very limited, posing a considerable challenge for prevention and treatment. The present in vitro study investigated the possible mechanisms of toxicity of two emerging NPS (i) 4′-methyl-alpha-pyrrolidinoexanophenone (3,4-MDPHP), a synthetic cathinone, and (ii) 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA), a phenethylamine. In addition, to apply our model to the class of synthetic opioids, we evaluated the toxicity of fentanyl, as a reference compound for this group of frequently abused substances. To this aim, the in vitro toxic effects of these three compounds were evaluated in dopaminergic-differentiated SH-SY5Y cells. Following 24 h of exposure, all compounds induced a loss of viability, and oxidative stress in a concentration-dependent manner. 2-Cl-4,5-MDMA activates apoptotic processes, while 3,4-MDPHP elicits cell death by necrosis. Fentanyl triggers cell death through both mechanisms. Increased expression levels of pro-apoptotic Bax and caspase 3 activity were observed following 2-Cl-4,5-MDMA and fentanyl, but not 3,4-MDPHP exposure, confirming the different modes of cell death.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 705
Author(s):  
Asmaa M. El-Kady ◽  
Iman A. M. Abdel-Rahman ◽  
Samer S. Fouad ◽  
Khaled S. Allemailem ◽  
Taghrid Istivan ◽  
...  

Giardiasis is a major diarrheal disease affecting approximately 2.5 million children annually in developing countries. Several studies have reported the resistance of Giardia lamblia (G. lamblia) to multiple drugs. Therefore, identifying an effective drug for giardiasis is a necessity. This study examined the antiparasitic effect of Punica granatum (pomegranate) and evaluated its therapeutic efficacy in rats infected with G. lamblia. In vitro study showed high efficacy of pomegranate peel ethanolic extract in killing G. lamblia cysts as demonstrated by eosin vital staining. We showed that treating infected rats with pomegranate extract resulted in a marked reduction in the mean number of G. lamblia cysts and trophozoites in feces and intestine respectively. Interestingly, the number of G. lamblia trophozoites and cysts were significantly lower in the pomegranate extract-treated group compared to the metronidazole-positive control group. Moreover, pomegranate extract treatment significantly induced nitric oxide (NO) and reduced serum IL-6 and TNF-α, compared to infected untreated rats. Histological and scanning electron microscopy (SEM) examination of the jejunum and duodenum of pomegranate extract-treated animals confirmed the antiparasitic effect of the extract, and demonstrated the restoration of villi structure with reduction of villi atrophy, decreased infiltration of lymphocytes, and protection of intestinal cells from apoptotic cell death. In conclusion, our data show that the pomegranate peel extract is effective in controlling G. lamblia infections, which suggests that it could be a viable treatment option for giardiasis.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 483
Author(s):  
Dahae Lee ◽  
Jun Yeon Park ◽  
Sanghyun Lee ◽  
Ki Sung Kang

In this study, we examined the effect of ethanolic extract of Salicornia herbacea (ESH), isorhamnetin 3-O-glucoside (I3G), quercetin 3-O-glucoside (Q3G), quercetin, and isorhamnetin on α-glucosidase activity and glucose-stimulated insulin secretion (GSIS) in insulin-secreting rat insulinoma (INS-1) cells. A portion of the ethyl acetate fraction of ESH was chromatographed on a silica gel by a gradient elution with chloroform and methanol to provide Q3G and I3G. ESH, Q3G, and quercetin inhibited α-glucosidase activity, and quercetin (IC50 value was 29.47 ± 3.36 μM) inhibited the activity more effectively than Q3G. We further demonstrated that ESH, Q3G, quercetin, I3G, and isorhamnetin promote GSIS in INS-1 pancreatic β-cells without inducing cytotoxicity. Among them, I3G was the most effective in enhancing GSIS. I3G enhanced the phosphorylation of total extracellular signal-regulated kinase (ERK), insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), Akt, and activated pancreatic and duodenal homeobox-1 (PDX-1), which are associated with insulin secretion and β-cell function. As components of ESH, Q3G has the potential to regulate blood glucose by inhibiting α-glucosidase activity, and I3G enhances the insulin secretion, but its bioavailability should be considered in determining biological importance.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qun Zhang ◽  
Zengqiang Qu ◽  
Yanqing Zhou ◽  
Jin Zhou ◽  
Junwei Yang ◽  
...  

Abstract Background Cornin is a commonly used herb in cardiology for its cardioprotective effect. The effect of herbs on the activity of cytochrome P450 enzymes (CYP450s) can induce adverse drug-drug interaction even treatment failure. Therefore, it is necessary to investigate the effect of cornin on the activity of CYP450s, which can provide more guidance for the clinical application of cornin. Methods Cornin (100 μM) was incubated with eight isoforms of CYP450s, including CYP1A2, 2A6, 3A4, 2C8, 2C9, 2C19, 2D6, and 2E1, in pooled human liver microsomes. The inhibition model and corresponding parameters were also investigated. Results Cornin exerted significant inhibitory effect on the activity of CYP3A4, 2C9, and 2E1 in a dose-dependent manner with the IC50 values of 9.20, 22.91, and 14.28 μM, respectively (p < 0.05). Cornin inhibited the activity of CYP3A4 non-competitively with the Ki value of 4.69 μM, while the inhibition of CYP2C9 and 2E1 by cornin was competitive with the Ki value of 11.31 and 6.54 μM, respectively. Additionally, the inhibition of CYP3A4 by cornin was found to be time-dependent with the KI/Kinact value of 6.40/0.055 min− 1·μM− 1. Conclusions The inhibitory effect of cornin on the activity of CYP3A4, 2C9, and 2E1 indicated the potential drug-drug interaction between cornin and drugs metabolized by these CYP450s, which needs further investigation and validation.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Maha M. Soltan ◽  
Howaida I. Abd-Alla ◽  
Amal Z. Hassan ◽  
Atef G. Hanna

Abstract Acovenoside A and acobioside A were isolated from Acokanthera oblongifolia. Their anticancer properties were explored regarding, antiproliferative and antiangiogenic activities. The study included screening phase against six cancer cell lines followed by mechanistic investigation against HepG2 cancer cell line. The sulforhodamine-B (SRB) was used to determine their growth inhibitory power. In the other hand, flow cytometry techniques were recorded the cell death type and cell cycle analysis. The clonogenic (colony formation) and wound healing assays, enzyme-linked immunosorbent assay (ELISA) and molecular docking, were performed to evaluate the antiangiogenesis capability. Both compounds were strongly, inhibited four cancer cell lines at GI50 less than 100 nM. The in vitro mechanistic investigation against HepG2 resulted in cell accumulations at G2M phase and induction of apoptosis upon treating cells separately, with 400 nM Acov-A and 200 nM Acob-A. Interestingly, the same concentrations were able to activate caspase-3 by 7.2 and 4.8-fold, respectively. Suppressing the clonogenic capacity of HepG2 cells (20 and 40 nM) and inhibiting the migration of the colon Caco-2 cancer cells were provoke the results of vascular endothelial growth factor receptor2 (VEGFR2) kinase enzyme inactivation. The docked study was highly supportive, to the antiangiogenic approach of both cardenolides. The isolated cardenolides could orchestrate pivotal events in fighting cancer.


Sign in / Sign up

Export Citation Format

Share Document