scholarly journals ISOLATION OF ANTIBACTERIAL PROTEIN/PEPTIDE FROM FICUS GLOMERATA LEAF

Author(s):  
Manisha Thapliyal ◽  
Anjali Bisht ◽  
Ajeet Singh

Objective: To isolate the antibacterial proteins/peptides from Ficus glomerata leaf.Methods: Present study was designed to investigate antibacterial activity of proteins/peptides isolated from Ficus glomerata leaf. The isolated proteins/peptides were further checked for antibacterial activity against, Pseudomonas aeruginosa, Bacillus subtilis, Escherichia coli and Salmonella entrica bacterial pathogens.Results: The results indicates that a 35kDa of protein were identified and exhibit good antibacterial activity against bacterial pathogen among all strains, Salmonella entrica and Pseudomonas aeruginosa exhibit good results with a clear zone of inhibition.Conclusion: Ficus glomerata is popular for its medicinal properties against therapeutic potential. In the present study a novel protein with broad spectrum antibacterial activity. Microbes cause severe damage to plants which results in a large economic loss so; this protein can be use as an active agent in agriculture for plant protection and also in the development of novel therapeutic agents.

Author(s):  
Tahany G. M. Mohammed ◽  
A. F. Abd El- Rahman

The formulation plays an essential role in achieving the successful delivery and biological activity of any plant protection products. This study aimed to develop a cinnamaldehyde water-based formulation (oil-in-water emulsion) via a high-shear stirring emulsification method. Cinnamaldehyde emulsion was successfully prepared and characterized using different physicochemical parameters (emulsion stability, persistent foaming, accelerated storage at 54°C for 2 weeks, and stability at 0°Cfor one week, as well as pH, surface tension, flash point, viscosity, and particle size distribution). Also, the antibacterial activity was verified in vitro against some important phytopathogenic bacteria; Erwinia amylovora, Pectobacterium aroidearum, Pseudomonas aeruginosa, and Ralstonia solanacearum using well diffusion method. In addition, the minimum inhibition concentration (MIC) was determined by the twofold dilution method. The results revealed that the prepared formulation showed good storage stability, exhibited non-Newtonian shear-thinning behavior and promising antibacterial activity. The inhibition zones against the tested phytopathogenic bacteria were ranged from 10.3 mm to 52.0 mm. MICs of the prepared formulation were 15.63, 31.25, 62.5, and 15.63 μl/ml against Erwinia amylovora, Pectobacterium aroidearum, Pseudomonas aeruginosa and Ralstonia solanacearum, respectively. Our results provide an environmentally friendly formulation with promising activity to control the agricultural crop disease.


Author(s):  
Walla Fadel Mohammed ◽  
Bushra Hindi Saleh ◽  
Reem Naem Ibrahim ◽  
Mohammed Bdaiwy Hassan

Aims: The objective of the present study was to investigate the phytochemical constituents and antibacterial activity of ginger extracts against some pathogenic bacteria responsible for Urinary tract infection. Study Design:  A total of 35 samples were collected from patients with UTIs and wound infections. Place and Duration of Study: The study was conducted at 2 hospitals in Baghdad from1/7/2017 to 1/9/2017 Methodology: The urine sample was collected using a sterile container, while a swap from the infected wound was also taken. The classical methods for diagnosis pathogenic bacteria in urine and wound are based on culture on different microbiological media including. Blood agar, nutrient agar, then incubated at 37°C for 24 hrs. The diagnostic procedures consisted of direct microscopy observation, Gram staining, Biochemical tests, Catalase and coagulase tests. Results: Results show that 30.55%, 38.8%, 19.46% and 11.11% isolates gave typical morphological characteristics and biochemical test for Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonae and Staphylococcus aureus respectively. Antibiotic susceptibility test reveals that Escherichia coli isolates were 100% sensitive to gentamicin, tetracycline, streptomycine. Pseudomonas aeruginosa isolates reveal that 100% of them were sensitive to gentamicin, Imipenem, ampicillin and streptomycine. Staphylococcus aureus isolates reveal that 100% of them were sensitive to Gentamycine, tetracycline and streptomycine. Klebsiella pneumonae isolates reveal that 100% of them were sensitive to nitrofurantoin and Imipenem.  Ginger roots extract at high concentration (250,500 mg/ml) have strong antibacterial activity against pathogenic bacteria (Staphylococcus aureus, Escherichia coli and Klebsiella pneumonae). Conclusion: This study has shown that ginger extracts possess medicinal properties, antibacterial activity and that the inhibition of bacterial growth was dose dependent. The results of the present study show that ginger extracts are more effective against all tested bacterial strains. The results of present study have provided the justification for therapeutic potential of ginger and also used as dietary supplement for food preservation.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Shaymaa Hassan Abdel-Rhman ◽  
Areej Mostafa El-Mahdy ◽  
Mohammed El-Mowafy

Mixed-species biofilms could create a protected environment that allows for survival to external antimicrobials and allows different bacterial-fungal interactions.Pseudomonas aeruginosa-Candida albicanscoexistence is an example for such mixed-species community. Numerous reports demonstrated howP. aeruginosaor its metabolites could influence the growth, morphogenesis, and virulence ofC. albicans. In this study, we investigated how theC. albicansquorum sensing compounds, tyrosol and farnesol, might affect Egyptian clinical isolates ofP. aeruginosaregarding growth, antibiotic sensitivity, and virulence. We could demonstrate that tyrosol possesses an antibacterial activity againstP. aeruginosa(10 µM inhibited more than 50% of growth after 16 h cultivation). Moreover, we could show for the first time that tyrosol strongly inhibits the production of the virulence factors hemolysin and protease inP. aeruginosa, whereas farnesol inhibits, to lower extent, hemolysin production in this bacterial pathogen. Cumulatively, tyrosol is expected to strongly affectP. aeruginosain mixed microbial biofilm.


2017 ◽  
Vol 19 (2) ◽  
pp. 121-125 ◽  
Author(s):  
Domenico Schillaci ◽  
Maria Grazia Cusimano ◽  
Stella Maria Cascioferro ◽  
Vita Di Stefano ◽  
Vincenzo Arizza ◽  
...  

2018 ◽  
Vol 16 (S1) ◽  
pp. S155-S163 ◽  
Author(s):  
S. Mehalaine ◽  
O. Belfadel ◽  
T. Menasria ◽  
A. Messaili

The present study was carried out to determine, for the first time, the chemical composition and antibacterial activity of essential oils derived from the aerial parts of three aromatic plants Thymus algeriensis Boiss & Reut, Rosmarinus officinalis L., and Salvia officinalis L. growing under semiarid conditions. The essential oils were chemically analyzed and identified by gas chromatography (GC) and GC/ mass spectrometry (GC/MS) and their antimicrobial activity was individually evaluated against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa using both agar disk diffusion and agar dilution methods. The major constituents of Thymus algeriensis essential oil were identified as camphor (13.62%), 1,8-cineol (6.00%), borneol (5.74%), viridiflorol (4.00%), and linalool (3.93%). For Rosmarinus officinalis essential oil, 48 compounds were characterized, of which the main constituents were camphor (17.09%), Z-β-ocimene (10.88%), isoborneol (9.68%), α-bisabolol (7.89%), and borneol (5.11%). While, Salvia officinalis essential oil was characterized by β-thujone (16.44%), followed by viridiflorol (10.93%), camphor (8.99%), 1,8-cineol (8.11%), trans-caryophyllene (5.85%), and α-humulene (4.69%) as the major components. Notably, results from antibacterial screening indicated that Thymus algeriensis and Salvia officinalis essential oils exhibited a strong inhibitory effect against both Escherichia coli and Staphylococcus aureus compared to Rosmarinus officinalis essential oil. Further, less activity was recorded against Pseudomonas aeruginosa for the three tested essential oils.


2019 ◽  
Vol 70 (10) ◽  
pp. 3603-3610
Author(s):  
Madalina Mihalache ◽  
Cornelia Guran ◽  
Aurelia Meghea ◽  
Vasile Bercu ◽  
Ludmila Motelica ◽  
...  

The three copper complexes having a-ketoglutaric acid (H2A) and 1- (o-tolyl) biguanide (TB) ligands have been synthesized and characterized. The proposed formulas for these complexes are: [Cu(TB)(HA)]Cl (C1), [Cu(TB)(HA)CH3COO]�H2O (C2) and [Cu(TB)(HA)](NO3) (C3) where HA represents deprotonated H2A. The complexes obtained were tested for antibacterial activity against Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 27853, antifungal activity on Candida albicans ATCC 10231 and antitumor activity on HeLa tumor cells. Due to the antitumor, antifungal, antimicrobial activity and inhibition of inert substrate adhesion, complexes synthesized could be used for potential therapeutic applications.


2020 ◽  
Vol 24 (8) ◽  
pp. 817-854
Author(s):  
Anil Kumar ◽  
Nishtha Saxena ◽  
Arti Mehrotra ◽  
Nivedita Srivastava

Quinolone derivatives have attracted considerable attention due to their medicinal properties. This review covers many synthetic routes of quinolones preparation with their antibacterial properties. Detailed study with structure-activity relationship among quinolone derivatives will be helpful in designing new drugs in this field.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 400
Author(s):  
Henry Lowe ◽  
Blair Steele ◽  
Joseph Bryant ◽  
Ngeh Toyang ◽  
Wilfred Ngwa

The cannabis plant (Cannabis sativa L.) produces an estimated 545 chemical compounds of different biogenetic classes. In addition to economic value, many of these phytochemicals have medicinal and physiological activity. The plant is most popularly known for its two most-prominent and most-studied secondary metabolites—Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). Both Δ9-THC and CBD have a wide therapeutic window across many ailments and form part of a class of secondary metabolites called cannabinoids—of which approximately over 104 exist. This review will focus on non-cannabinoid metabolites of Cannabis sativa that also have therapeutic potential, some of which share medicinal properties similar to those of cannabinoids. The most notable of these non-cannabinoid phytochemicals are flavonoids and terpenes. We will also discuss future directions in cannabis research and development of cannabis-based pharmaceuticals. Caflanone, a flavonoid molecule with selective activity against the human viruses including the coronavirus OC43 (HCov-OC43) that is responsible for COVID-19, and certain cancers, is one of the most promising non-cannabinoid molecules that is being advanced into clinical trials. As validated by thousands of years of the use of cannabis for medicinal purposes, vast anecdotal evidence abounds on the medicinal benefits of the plant. These benefits are attributed to the many phytochemicals in this plant, including non-cannabinoids. The most promising non-cannabinoids with potential to alleviate global disease burdens are discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adriana Valeria Jäger ◽  
Paula Arias ◽  
Maria Virginia Tribulatti ◽  
Marcela Adriana Brocco ◽  
Maria Victoria Pepe ◽  
...  

AbstractPathogens phagocytosis and the uptake of apoptotic cells (efferocytosis) are essential macrophages tasks, classically considered as mutually exclusive. Macrophages have been observed to polarize into either pro-inflammatory/microbicidal or anti-inflammatory/efferocytic phenotypes. However, macrophage functions have shown to be more complex. Furthermore, little is known about the regulation of efferocytosis under inflammatory conditions. In this study, we elucidate the modulation of the macrophage efferocytic function during an inflammatory stimulus. We find that bone marrow-derived macrophages (BMDM) are very efficient in engulfing both the bacterial pathogen Pseudomonas aeruginosa and apoptotic cells. BMDM showed a high bactericidal capacity unaffected by the concomitant presence of apoptotic material. Plasticity in macrophage programming, in response to changing environmental cues, may modulate efferocytic capability. In this work, we further show that, after phagocyting and processing Pseudomonas aeruginosa, macrophages highly increase their efferocytic capacity without affecting their phagocytic function. Moreover, we demonstrate that Pseudomonas aeruginosa enhances efferocytosis of these phagocytes through the IL-6 signaling pathway. Our results show that the inflammatory response generated by the bacterial processing enhances these macrophages’ capacity to control inflammation through an increased efferocytosis.


Sign in / Sign up

Export Citation Format

Share Document