scholarly journals FABRICATION OF NANOFIBRES BY ELECTROSPINNING USING KERATIN FROM WASTE CHICKEN FEATHERS, PVA AND AgNPs

Author(s):  
VARUN DINESH MADAPALLY ◽  
PANDIMADEVI M.

Objective: To prepare and characterise keratin from chicken feathers (CF), collected from the slaughter house, and to blend with poly vinly alcohol (PVA) and biosynthesised silver nanoparticles (AgNPs) and to convert into nanofibers by an elctrospinning process. Methods: The extraction of keratin from chicken feathers was done by sodium m-bisulphite. The solution was subjected to ammonium sulphate precipitation to separate keratin. The nanoparticles was synthesised using tridax procumbens. The isolated keratin and PVA was mixed in the ration 0f 50:50 with 1 ml of biosynthesised nanoparticles was blended and made into nanofibres by electrospinning technique. Results: The precipitated protein was analysed using FT-IR analysis confirming the presence of β-keratin in the sample isolated from chicken feathers and the concentration of keratin was estimated to be 1.85 g/ml. PVA solution with 4% w/v had the best film forming ability. The solution containing keratin, PVA and silver nanoparticles was prepared in various proportions. These solutions when subjected to electrospinning, fibrous network was observed in 50:50 (PVA: Keratin) ratio with 1 ml of synthesised silver nanoparticle solution. Hydrogen bonding between keratin and PVA indicated in the XRD analysis showed successful film forming of the nanofiber, the DSC analysis also showed similar results as the obtained peak was at 214 °C which is in between the characteristic heat degradation temperature of both the keratin and PVA. The thermogravimetric analysis (TGA) showed high thermal stability as the complete degradation of the nanofiber was observed at 420 °C. Incorporation of metal nanoparticles by herbal approach using tridax procumbens in the nanofibers provided the antimicrobial properties. The nanofibres obtained by electrospinning process appeared stable and continous for solutions containing no more than 50% wt of CF. The average diameter of the nanofibres increased as the CF content increased. Conclusion: Keratin isolated from the waste chicken feathers impregnated with biosyntheised silver nanoparticles using tridax procumbens and PVA can be converted into nanofibers by electrospinning process. Thus, the biocomposite nano fibers are shown as a novel eco-friendly material that must be adequately applied in the development of green composites for the biomedical applications such as wound dressings.

2019 ◽  
Vol 798 ◽  
pp. 53-58
Author(s):  
Pattarinee White ◽  
Sirinat Chooprajong ◽  
Piyapong Pankaew

Thunbergia laurifolia is a Thai herb that possesses outstanding wound healing properties. In addition, Sericin, obtained from the Bombyx mori silkworm, is also a potential candidate for wound healing applications. This is due to its moisture content and hydrophilic and antimicrobial properties. In this research, an electrospinning technique using Sericin and Thunbergia laurifolia was studied for wound healing purposes. Sericin solution was prepared by boiling Bombyx mori silkworm at 80 °C and Thunbergia laurifolia solution was prepared by boiling Thunbergia laurifolia leaves in distilled water at 100°C. The Sericin-Thunbergia laurifolia (STL) solution was mixed at the ratios of 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2 and 9:1 respectively. After mixing the solution of STL at the various ratios, all STL solutions were blended with 9 wt% PVA for the electrospinning process. The ratios of Sericin and Thunbergia laurifolia, the applied voltage and the distance between the needle tip to the target and the size of the needle were all optimized in this study. The fibre morphology was examined through SEM images. The electrospun PVA–STL fibre was found to have an average diameter in the range of 100-530 nm. The result from the SEM images showed the optimum ratio of Sericin and Thunbergia laurifolia to be 5:5. A suitable applied voltage, the distance between the needle tip to target and the size of the needle were 15 kV, 10 cm and an 18 gauge needle, respectively.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2223 ◽  
Author(s):  
Elaine Pereira dos Santos ◽  
Pedro Henrique Medeiros Nicácio ◽  
Francivandi Coêlho Barbosa ◽  
Henrique Nunes da Silva ◽  
André Luís Simões Andrade ◽  
...  

Film-forming emulsions and films, prepared by incorporating different concentrations of clove essential oil (CEO) and melaleuca essential oil (MEO) into chitosan (CS) were obtained and their properties were evaluated. Film-forming emulsions were characterized in terms of qualitative assessment, hydrogen potential and in vitro antibacterial activity, that was carried by the agar diffusion method, and the growth inhibition effects were tested on the Gram-positive microorganism of Staphylococcus aureus, Gram-negative microorganisms of Escherichia coli, and against isolated fungi such as Candida albicans. In order to study the impact of the incorporation of CEO and MEO into the CS matrix, the appearance and thickness of the films were evaluated. Furthermore, Fourier transform infrared spectroscopy (FTIR), contact angle measurements, a swelling test, scanning electron microscopy and a tensile test were carried out. Results showed that the film-forming emulsions had translucent aspect with cloudy milky appearance and showed antimicrobial properties. The CEO had the highest inhibition against the three strains studied. As regards the films’ properties, the coloration of the films was affected by the type and concentration of bioactive used. The chitosan/CEO films showed an intense yellowish coloration while the chitosan/MEO films presented a slightly yellowish coloration, but in general, all chitosan/EOs films presented good transparency in visible light besides flexibility, mechanical resistance when touched, smaller thicknesses than the dermis and higher wettability than chitosan films, in both distilled water and phosphate-buffered saline (PBS). The interactions between the chitosan and EOs were confirmed by. The chitosan/EOs films presented morphologies with rough appearance and with EOs droplets in varying shapes and sizes, well distributed along the surface of the films, and the tensile properties were compatible to be applied as wound dressings. These results revealed that the CEO and MEO have a good potential to be incorporated into chitosan to make films for wound-healing applications.


2012 ◽  
Vol 1376 ◽  
Author(s):  
Haydee Vargas-Villagran ◽  
Elvia Teran-Salgado ◽  
Maraolina Dominguez-Diaz ◽  
Osvaldo Flores ◽  
Bernardo Campillo ◽  
...  

ABSTRACTIn this research, we describe the electrospinning processing of polylactic acid (PLA) and the influence of silver nanoparticles on the morphology and microstructure of produced non woven membranes thus produced. The PLA was electrospun from a chloroform solution and a filamentary and granular morphology was obtained, the filaments having an average diameter of 1.25 μm, When silver nanoparticles (of ca. 12 nm size) were incorporated, the filaments diameter was reduced to an average of 0.65 μm, and the density of beads was also reduced. The membranes were rather amorphous, as revealed by X-ray scattering, presumably due to the quenching process associated with the electrospinning process. Water contact angle measurements showed that silver nanoparticles induced significant hidrophobicity in the membranes as neat PLA membrane had a contact angle of 54° and PLA/Ag membrane exhibited an angle of 115°.


2012 ◽  
Vol 622-623 ◽  
pp. 271-275 ◽  
Author(s):  
Patcharaporn Thitiwongsawet ◽  
Tanwa Tiyajalearn ◽  
Aumnart Klinchan ◽  
Chaninporn Thanatthammachote

Polycaprolactone (PCL) fiber bundles were successfully prepared by self-bundling electrospinning technique from two different concentrations (i.e. 12% and 15% w/v) of PCL solution. Self-bundling of electrospun fibers was induced by used of a grounded needle tip at the beginning of electrospinning process. Electrical conductivity of PCL solutions were increased and average fiber diameter were decreased by addition and increasing amount of pyridinium formate (PF) at concentration of 3, 4, and 5% w/v into either 12% or 15% w/v PCL solutions. The average diameter of electrospun fibers and bundles were in range of 2.1-3.3 m and 100-120 m, respectively.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2062
Author(s):  
Hao Lu ◽  
Jonathan A. Butler ◽  
Nicole S. Britten ◽  
Prabhuraj D. Venkatraman ◽  
Sameer S. Rahatekar

Alginate is a linear biodegradable polysaccharide polymer, which is bio-renewable and widely used for various biomedical applications. For the next generation of medical textiles, alginate nanofibres are desirable for their use in wound dressings that are biocompatible, sustainable, and abundantly available. This study has developed a unique manufacturing process for producing alginate nanofibres with exceptional antimicrobial properties of oregano essential oil (OEO) as a natural antimicrobial agent. OEO with varying degrees of concentration was incorporated in an aqueous alginate solution. Appropriate materials and electrospinning process parameter selection allowed us to manufacture alginate fibres with a range of diameters between 38 and 105 nm. A unique crosslinking process for alginate nanofibres using extended water soaking was developed. Mechanical characterisation using micro-mechanical testing of nonwoven electrospun alginate/oregano composite nanofibres revealed that it was durable. An extensive antimicrobial study was carried out on alginate/oregano composite nanofibres using a range of Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA) and Listeria monocytogenes) and Gram-negative bacteria (Klebsiella pneumoniae and Salmonella enterica), which are common wound and food pathogens. The results indicated that increasing the concentration of OEO from 2 to 3 wt % showed improved antimicrobial activity against all pathogens, and activity was significantly improved against MRSA compared to a non-alginate-based control disk containing OEO. Therefore, our research suggests that all-natural alginate/oregano nanofibre composite textiles offer a new generation of medical textiles for advanced wound dressing technology as well as for food packaging applications.


2013 ◽  
Vol 651 ◽  
pp. 87-90 ◽  
Author(s):  
Xiu Lian Wang ◽  
Liu Xue Zhang

In this study, composite nanofibers of polyaniline doped with dodecylbenzene sulfonic acid (PANI-DBSA) and polyurethane (PU) were prepared via an electrospinning process. The morphology, diameter, and structure of the electrospun nanofibers were investigated. SEM images showed that the morphology and diameter of the nanofibers were mainly affected by the weight ratio of the blend. The average diameter of the nanofibers was 370–1620 nm. The diameter gradually decreased with increasing PANI-DBSA content in the blend, and more beads were obtained in the composite.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1618 ◽  
Author(s):  
Mariana Daniela Berechet ◽  
Carmen Gaidau ◽  
Aleksandra Miletic ◽  
Branka Pilic ◽  
Maria Râpă ◽  
...  

This research aimed to obtain biocompatible and antimicrobial nanofibres based on concentrated collagen hydrolysate loaded with thyme or oregano essential oils as a natural alternative to synthesis products. The essential oils were successfully incorporated using electrospinning process into collagen resulting nanofibres with diameter from 471 nm to 580 nm and porous structure. The presence of essential oils in collagen nanofibre mats was confirmed by Attenuated Total Reflectance -Fourier Transform Infrared Spectroscopy (ATR-FTIR), Ultraviolet–visible spectroscopy (UV–VIS) and antimicrobial activity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy analyses allowed evaluating the morphology and constituent elements of the nanofibre networks. Microbiological tests performed against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans showed that the presence of essential oils supplemented the new collagen nanofibres with antimicrobial properties. The biocompatibility of collagen and collagen with essential oils was assessed by in vitro cultivation with NCTC clone 929 of fibroblastic cells and cell viability measurement. The results showed that the collagen and thyme or oregano oil composites have no cytotoxicity up to concentrations of 1000 μg·mL−1 and 500 μg mL−1, respectively. Optimization of electrospinning parameters has led to the obtaining of new collagen electrospun nanofibre mats loaded with essential oils with potential use for wound dressings, tissue engineering or protective clothing.


2018 ◽  
Vol 11 (4) ◽  
pp. 289-293 ◽  
Author(s):  
Jana Franková ◽  
Jana Juráňová ◽  
Vojtěch Kamarád ◽  
Bohumil Zálešák ◽  
Jitka Ulrichová

Abstract Nanoparticles are utilized in a wide range of industries. The most studied silver nanoparticles (AgNPs) are used in medicine and also in several wound dressings due to their antimicrobial properties. The inflammatory response or potential morphological changes of skin cells after their application are not well known yet. In our study we used the model of human reconstructed epidermis (RHE), prepared in our laboratory, to evaluate whether the AgNPs penetrate through RHE, induce some morphological changes of keratinocytes or influence the production of pro-inflammatory cytokines (IL-6 and IL-8). After the application of three different concentrations (25 ppm, 2.5 ppm, 0.25 ppm) of AgNPs to of RHE for 24 hours we verified that AgNPs did not affect the production of pro-inflammatory cytokines (IL-6 and IL-8) and neither did they influence the expression of keratin K14 and loricrin. The morphology of the cells was likewise unchanged. Based on these results we conclude that AgNPs do not have any negative effect on the morphological changes and do not increase the production of pro-inflammatory cytokines.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1185 ◽  
Author(s):  
Bishweshwar Pant ◽  
Mira Park ◽  
Soo-Jin Park

A new and straightforward route was proposed to incorporate silver nanoparticles (Ag NPs) into the surface of polyurethane nanofibers (PU NFs). Uniform distribution of in situ formed Ag NPs on the surface of PU NFs was achieved by adding AgNO3 and tannic acid in a PU solution prior to the electrospinning process. The synthesized nanofiber mats were characterized with state-of-the-art techniques and antibacterial performances were tested against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria. The cytocompatibility and cell behavior were studied by using fibroblast cells. Following this preparation route, Ag/PU NFs can be obtained with excellent antibacterial performance, thus making them appropriate for various applications such as water filtration, wound dressings, etc.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2311 ◽  
Author(s):  
Héctor D. López-Calderón ◽  
Hamlet Avilés-Arnaut ◽  
Luis J. Galán-Wong ◽  
Verónica Almaguer-Cantú ◽  
J. R. Laguna-Camacho ◽  
...  

Acceleration of wound healing can be achieved with the use of wound dressings. Through the electrospinning technique, a polymeric scaffold composed of two layers was processed: a gelatin and polyvinylpyrrolidone layer with gentamicin, and a second layer of cellulose acetate. The conditions for the electrospinning process were standardized for voltage parameters, feed flow and the distance from the injector to the collector. Once the values of the main variables for the electrospinning were optimized, a three-hour processing time was established to allow the separation of the material from the collector. The obtained material was characterized by observations on scanning electron microscopy, Fourier transform infrared spectroscopy and thermal analysis; contact angle measurement was performed to evaluate wettability properties, and antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus were evaluated using the Kirby–Bauer test. The obtained fibers that form the bi-layer scaffold present diameters from 100 to 300 nm. The scaffold presents chemical composition, thermal stability, wettability characteristics and antibacterial activity that fulfill the proposal from this study, based on obtaining a scaffold that could be used as a drug delivery vehicle and a wound dressing material.


Sign in / Sign up

Export Citation Format

Share Document