scholarly journals Effect of AgNPs on the human reconstructed epidermis

2018 ◽  
Vol 11 (4) ◽  
pp. 289-293 ◽  
Author(s):  
Jana Franková ◽  
Jana Juráňová ◽  
Vojtěch Kamarád ◽  
Bohumil Zálešák ◽  
Jitka Ulrichová

Abstract Nanoparticles are utilized in a wide range of industries. The most studied silver nanoparticles (AgNPs) are used in medicine and also in several wound dressings due to their antimicrobial properties. The inflammatory response or potential morphological changes of skin cells after their application are not well known yet. In our study we used the model of human reconstructed epidermis (RHE), prepared in our laboratory, to evaluate whether the AgNPs penetrate through RHE, induce some morphological changes of keratinocytes or influence the production of pro-inflammatory cytokines (IL-6 and IL-8). After the application of three different concentrations (25 ppm, 2.5 ppm, 0.25 ppm) of AgNPs to of RHE for 24 hours we verified that AgNPs did not affect the production of pro-inflammatory cytokines (IL-6 and IL-8) and neither did they influence the expression of keratin K14 and loricrin. The morphology of the cells was likewise unchanged. Based on these results we conclude that AgNPs do not have any negative effect on the morphological changes and do not increase the production of pro-inflammatory cytokines.

2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Evangelia A Pavlatou

The transmission of a wide range of diseases, related to the infection by pathogenic microorganisms is a major public health problem that daily endangers the safety of human population. Silver has been thoroughly studied and used against bacteria due to its antimicrobial properties. Nanostructured silver gathers all the advantages of the silver itself, as well as the advanced performance of the nanomaterials. Thus, currently, silver nanoparticles constitute the most widely used kind of nanoparticles in biomedicine, due to their attractive antimicrobial properties. A variety of physical and chemical methods are employed for the AgNPs synthesis. However, many of them include the use of toxic reagents or require large amounts of energy, during the synthesis process. For this reason, many eco-friendly methods are proposed in order to synthesize AgNPs. Hence, biogenic synthesis of AgNPs, utilizing biological resources opens a novel route for the development of alternative production processes.These methods seem to have significant advantages, as the extracts contribute positively to the formation and enhancement of the antimicrobial activity of AgNPs, also acting as protective agents of the produced particles. In this review an integrated approach of AgNPs bio-synthetic methods using microorganisms, such as bacteria and fungi, plants and plant extracts, as well as several templates, like DNA and viruses is discussed, shedding light on the comparative advantages of them.


2019 ◽  
Vol 139 (9) ◽  
pp. S285
Author(s):  
M. Boboljova ◽  
I. Asamaowei ◽  
V. Botchkarev ◽  
M. Fessing ◽  
A. Mardaryev

Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 188 ◽  
Author(s):  
Ayaz Anwar ◽  
Mohammad Ridwane Mungroo ◽  
Simal Khan ◽  
Itrat Fatima ◽  
Rafaila Rafique ◽  
...  

Balamuthia mandrillaris and Naegleria fowleri are opportunistic protozoan pathogens capable of producing infection of the central nervous system with more than 95% mortality rate. Previously, we have synthesized several compounds with antiamoebic properties; however, synthesis of compounds that are analogues of clinically used drugs is a highly desirable approach that can lead to effective drug development against these devastating infections. In this regard, compounds belonging to the azole class possess wide range of antimicrobial properties and used clinically. In this study, six novel benzimidazole, indazole, and tetrazole derivatives were synthesized and tested against brain-eating amoebae. These compounds were tested for their amoebicidal and static properties against N. fowleri and B. mandrillaris. Furthermore, the compounds were conjugated with silver nanoparticles and characterized. The synthetic heterocyclic compounds showed up to 72% and 65% amoebicidal activities against N. fowleri and B. mandrillaris respectively, while expressing up to 75% and 70% amoebistatic activities, respectively. Following conjugation with silver nanoparticles, amoebicidal activities of the drugs increased by up to 46 and 36% versus B. mandrillaris and N. fowleri. Minimal effects were observed when the compounds were evaluated against human cells using cytotoxicity assays. In summary, azole compounds exhibited potent activity against N. fowleri and B. mandrillaris. Moreover, conjugation of the azole compounds with silver nanoparticles further augmented the capabilities of the compounds against amoebae.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2340
Author(s):  
Mykyta I. Malkov ◽  
Chee Teik Lee ◽  
Cormac T. Taylor

Hypoxia and inflammation are frequently co-incidental features of the tissue microenvironment in a wide range of inflammatory diseases. While the impact of hypoxia on inflammatory pathways in immune cells has been well characterized, less is known about how inflammatory stimuli such as cytokines impact upon the canonical hypoxia-inducible factor (HIF) pathway, the master regulator of the cellular response to hypoxia. In this review, we discuss what is known about the impact of two major pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), on the regulation of HIF-dependent signaling at sites of inflammation. We report extensive evidence for these cytokines directly impacting upon HIF signaling through the regulation of HIF at transcriptional and post-translational levels. We conclude that multi-level crosstalk between inflammatory and hypoxic signaling pathways plays an important role in shaping the nature and degree of inflammation occurring at hypoxic sites.


2020 ◽  
Vol 21 (1) ◽  
pp. 78-98
Author(s):  
Elham Mohit ◽  
Maryam Tabarzad ◽  
Mohammad Ali Faramarzi

The oxidation of a vast range of phenolic and non-phenolic substrates has been catalyzed by laccases. Given a wide range of substrates, laccases can be applied in different biotechnological applications. The present review was conducted to provide a broad context in pharmaceutical- and biomedical- related applications of laccases for academic and industrial researchers. First, an overview of biological roles of laccases was presented. Furthermore, laccase-mediated strategies for imparting antimicrobial and antioxidant properties to different surfaces were discussed. In this review, laccase-mediated mechanisms for endowing antimicrobial properties were divided into laccase-mediated bio-grafting of phenolic compounds on lignocellulosic fiber, chitosan and catheters, and laccase-catalyzed iodination. Accordingly, a special emphasis was placed on laccase-mediated functionalization for creating antimicrobials, particularly chitosan-based wound dressings. Additionally, oxidative bio-grafting and oxidative polymerization were described as the two main laccase-catalyzed reactions for imparting antioxidant properties. Recent laccase-related studies were also summarized regarding the synthesis of antibacterial and antiproliferative agents and the degradation of pharmaceuticals and personal care products.


Parasitology ◽  
2017 ◽  
Vol 145 (7) ◽  
pp. 871-884 ◽  
Author(s):  
E. Boucher ◽  
M. Marin ◽  
R. Holani ◽  
M. Young-Speirs ◽  
D.M. Moore ◽  
...  

AbstractNeospora caninumis a coccidian intracellular protozoan capable of infecting a wide range of mammals, although severe disease is mostly reported in dogs and cattle. Innate defences triggered by monocytes/macrophages are key in the pathogenesis of neosporosis, as these cells are first-line defenders against intracellular infections. The aim of this study was to characterize infection and innate responses in macrophages infected withN. caninumusing a well-known cell model to study macrophage functions (human monocyte THP-1 cells). Intracellular invasion of live tachyzoites occurred as fast as 4 h (confirmed with immunofluorescence microscopy usingN. caninum-specific antibodies). Macrophages infected byN. caninumhad increased expression of pro-inflammatory cytokines (TNFα, IL-1β, IL-8, IFNγ). Interestingly,N. caninuminduced expression of host-defence peptides (cathelicidins), a mechanism of defence never reported forN. caninuminfection in macrophages. The expression of cytokines and cathelicidins in macrophages invaded byN. caninumwas mediated by mitogen-activated protein kinase (MEK 1/2). Secretion of such innate factors fromN. caninum-infected macrophages reduced parasite internalization and promoted the secretion of pro-inflammatory cytokines in naïve macrophages. We concluded that rapid invasion of macrophages byN. caninumtriggered protective innate defence mechanisms against intracellular pathogens.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Mingye Wang ◽  
Wenyan Li ◽  
Wenwen Cui ◽  
Yuanyuan Hao ◽  
Yao Mi ◽  
...  

Abstract Background Lianhuaqingke (LHQK) has been approved for the treatment of acute tracheobronchitis and exerts a broad-spectrum antiviral effect in our previous study. Methods Acute pneumonia caused by HCoV-229E was modeled in BALB/c mice. The anti-viral effect of LHQK was assessed by measuring the lung index and virus titer of lung tissues. The expression levels of pro-inflammatory cytokines in lung tissues and peripheral blood were measured by ELISA. The morphological changes of lung tissues were observed by H&E staining. The subsets of Th cells were assayed by the flow cytometry, including Th0, Th1, Th2, Treg, and Th17. The expression level of MUC5AC in 16HBE cells treated with TNFα was measured by ELISA. Immunofluorescence staining for β-IV tubulin was used to identify the airway epithelial ciliary in the condition-cultured RTE cells treated with TNFα. The direct antiviral effect of LHQK was assessed in vitro in Vero E6 infected by SARS-CoV-2, validated in vivo in the COVID-19 model of hACE2 transgenic mouse by detecting the lung index, the SARS-CoV-2 virus load, and the morphological changes of lung tissues. Results LHQK reduced the weight loss and the lung index by inhibiting the HCoV-229E replication and reducing the expression of pro-inflammatory cytokines in lung tissues. An assay for the Th cell subsets in peripheral blood revealed that LHQK could reduce the ratio of Th1/Th2 and increase the Treg/Th17 ratio in a dose-dependent way, which indicated that LHQK could coordinate the Th-mediated immune responses against the virus. In in vitro injury by TNFα, LHQK inhibited MUC5AC expression in 16HBE cells and increased the number of β-IV tubulin positive staining cells in the condition-cultured RTE cells. In the SARS-CoV-2-infected mice, LHQK could reduce weight loss, inhibit viral replication, and alleviate lung tissue damage. Conclusions Our results demonstrate that LHQK exerts therapeutic effects on pneumonia caused by HCoVs (HCoV-229E and SARS-CoV-2) in mice, and that the anti-HCoV effects might depend on its immunomodulatory capacities. All these results suggest that LHQK serves as a potential adjuvant for anti-HCoV therapies.


2020 ◽  
Vol 21 (10) ◽  
pp. 3441 ◽  
Author(s):  
Renata Biba ◽  
Dajana Matić ◽  
Daniel Mark Lyons ◽  
Petra Peharec Štefanić ◽  
Petra Cvjetko ◽  
...  

Silver nanoparticles (AgNPs) are used in a wide range of consumer products because of their excellent antimicrobial properties. AgNPs released into the environment are prone to transformations such as aggregation, oxidation, or dissolution so they are often stabilised by coatings that affect their physico-chemical properties and change their effect on living organisms. In this study we investigated the stability of polyvinylpyrrolidone (PVP) and cetyltrimethylammonium bromide (CTAB) coated AgNPs in an exposure medium, as well as their effect on tobacco germination and early growth. AgNP-CTAB was found to be more stable in the solid Murashige and Skoog (MS) medium compared to AgNP-PVP. The uptake and accumulation of silver in seedlings was equally efficient after exposure to both types of AgNPs. However, AgNP-PVP induced only mild toxicity on seedlings growth, while AgNP-CTAB caused severe negative effects on all parameters, even compared to AgNO3. Moreover, CTAB coating itself exerted negative effects on growth. Cysteine addition generally alleviated AgNP-PVP-induced negative effects, while it failed to improve germination and growth parameters after exposure to AgNP-CTAB. These results suggest that the toxic effects of AgNP-PVP are mainly a consequence of release of Ag+ ions, while phytotoxicity of AgNP-CTAB can rather be ascribed to surface coating itself.


Author(s):  
VARUN DINESH MADAPALLY ◽  
PANDIMADEVI M.

Objective: To prepare and characterise keratin from chicken feathers (CF), collected from the slaughter house, and to blend with poly vinly alcohol (PVA) and biosynthesised silver nanoparticles (AgNPs) and to convert into nanofibers by an elctrospinning process. Methods: The extraction of keratin from chicken feathers was done by sodium m-bisulphite. The solution was subjected to ammonium sulphate precipitation to separate keratin. The nanoparticles was synthesised using tridax procumbens. The isolated keratin and PVA was mixed in the ration 0f 50:50 with 1 ml of biosynthesised nanoparticles was blended and made into nanofibres by electrospinning technique. Results: The precipitated protein was analysed using FT-IR analysis confirming the presence of β-keratin in the sample isolated from chicken feathers and the concentration of keratin was estimated to be 1.85 g/ml. PVA solution with 4% w/v had the best film forming ability. The solution containing keratin, PVA and silver nanoparticles was prepared in various proportions. These solutions when subjected to electrospinning, fibrous network was observed in 50:50 (PVA: Keratin) ratio with 1 ml of synthesised silver nanoparticle solution. Hydrogen bonding between keratin and PVA indicated in the XRD analysis showed successful film forming of the nanofiber, the DSC analysis also showed similar results as the obtained peak was at 214 °C which is in between the characteristic heat degradation temperature of both the keratin and PVA. The thermogravimetric analysis (TGA) showed high thermal stability as the complete degradation of the nanofiber was observed at 420 °C. Incorporation of metal nanoparticles by herbal approach using tridax procumbens in the nanofibers provided the antimicrobial properties. The nanofibres obtained by electrospinning process appeared stable and continous for solutions containing no more than 50% wt of CF. The average diameter of the nanofibres increased as the CF content increased. Conclusion: Keratin isolated from the waste chicken feathers impregnated with biosyntheised silver nanoparticles using tridax procumbens and PVA can be converted into nanofibers by electrospinning process. Thus, the biocomposite nano fibers are shown as a novel eco-friendly material that must be adequately applied in the development of green composites for the biomedical applications such as wound dressings.


2014 ◽  
Vol 459 (3) ◽  
pp. 479-488 ◽  
Author(s):  
Sven W. Görgens ◽  
Kristin Eckardt ◽  
Manuela Elsen ◽  
Norbert Tennagels ◽  
Jürgen Eckel

CHI3L1 is up-regulated by pro-inflammatory cytokines and counteracts TNFα-mediated inflammation in human skeletal muscle via PAR2. Hence, we suggest CHI3L1 to be an autoprotective factor that is activated to protect skeletal muscle from the negative effect of TNFα.


Sign in / Sign up

Export Citation Format

Share Document