CAVIN2 is frequently silenced by CpG methylation and sensitizes lung cancer cells to paclitaxel and 5-FU

Epigenomics ◽  
2020 ◽  
Vol 12 (20) ◽  
pp. 1793-1810
Author(s):  
Mingyu Peng ◽  
Lin Ye ◽  
Li Yang ◽  
Xinzhu Liu ◽  
Yuhan Chen ◽  
...  

Aim: To explore the biological functions and clinical significance of CAVIN2 in lung cancer. Materials & methods: Methylation-specific PCR was used to measure promoter methylation of CAVIN2. The function of CAVIN2 was tested by Cell Counting Kit-8, colony formation, Transwell, flow cytometric analysis, acridine orange/ethidium bromide, chemosensitivity assay and xenograft assay. Results:  CAVIN2 is significantly downregulated by promoter methylation in lung cancer. CAVIN2 overexpression inhibits lung cancer cell migration and invasion. Furthermore, ectopic expression of CAVIN2 inhibits cell proliferation in vivo and in vitro by inducing G2/M cell cycle arrest, which sensitizes the chemosensitivity of lung cancer cells to paclitaxel and 5-fluorouracil, but not cisplatin. Conclusion:  CAVIN2 is a tumor suppressor in non-small-cell lung cancer and can sensitize lung cancer cells to paclitaxel and 5-fluorouracil.

2019 ◽  
Vol 9 (12) ◽  
pp. 1644-1652
Author(s):  
Xueqin Pan ◽  
Dongchun Ma

Lung cancer is one of the most common malignant cancers with a poor survival rate and high mortality worldwide. MiRNAs have been evaluated as crucial regulators of human gene expression, and exerted vital role involved in cancer progression. MiR-302a-3p was aberrant expressed in cancers that include pancreatic cancer and hepatocellular cancer, but its biological role in lung cancer remains elusive. This study aimed to discover the role and potential mechanism of miR-302a-3p in lung cancer. The lung cancer cell line with the highest expression of miR-302a-3p was selected, which was then subjected to transfection of miR-302a-3p mimic. Quantitative RT-PCR was performed to detect gene expression. Western blot assay was performed to determine corresponding genes that related to cell proliferation, apoptosis and invasion. Cell Counting Kit (CCK)-8 assay, flow cytometry analysis, wound healing and Transwell assay were performed to detect cell proliferation, apoptosis, migration and invasion, respectively. Luciferase reporter assay was carried out to identify the targeting relationship of miR-302-3p and HOXA-AS2. MiR-302a-3p was downregulated in lung cancer cells, and overexpression of miR-302a-3p significantly suppressed cell proliferation, migration, invasion and promoted cell apoptosis. HOXA-AS2 was a direct target of miR-302a-3p and was regulated by miR-302a-3p. HOXA-AS2 was upregulated in lung cancer cells. Upregulated HOXA-AS2 could reverse the effect that overexpression of miR-302a-3p caused on cell proliferation, apoptosis, migration and invasion. Overall, miR-302a-3p exhibited anti-oncogenic activity by inhibiting cell proliferation, migration and invasion, and promoting cell apoptosis in lung cancer by targeting HOXA-AS2, disclosing the role and regulatory mechanism of miR-302a-3p, which provided a promising therapeutic target for the clinical application of lung cancer treatment.


2018 ◽  
Vol 6 (2) ◽  
pp. 48-53 ◽  
Author(s):  
Wang Zhen-fei ◽  
Liu Li ◽  
Liang Lin ◽  
Hao Qin

Abstract Objective The aim of this study was to investigate the effect of Radix Glehniae on the migration and invasion abilities of lung cancer cells. Methods Normal bronchial cell line 16HBE and lung cancer cell line SK-MES-1 were treated with Radix Glehniae extract. Proliferation, migration, and invasion abilities were determined by Cell Counting Kit (CCK)-8, Transwell, and Matrigel assays, respectively. The expression and secretion levels of tissue inhibitor of metalloproteinases 2 were detected by quantitative PCR and enzyme-linked immunosorbent assay, respectively. Results Radix Glehniae extract inhibited the migration and invasion abilities of SK-MES-1 cells and enhanced TIMP2 expression and secretion by SK-MES-1 cells, without causing toxicity to 16HBE cells. Conclusion Radix Glehniae is useful in lung cancer treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Fan Zhang ◽  
Jingfei Meng ◽  
Hong Jiang ◽  
Xing Feng ◽  
Dongshan Wei ◽  
...  

The expression of G2 and S phase-expressed-1 (GTSE1) was upregulated in human cancer. However, its expression and roles in lung cancer have not been identified yet. In our study, we reported that GTSE1 expression was statistically higher in lung tissues than in the adjacent noncancerous tissues which might be a consequence of hypomethylation of the GTSE1 promoter. The upregulated expression of GTSE1 mRNA predicted the poorer survival of the lung patients. Ectopic expression of GTSE1 in lung cancer cells significantly increased while knockdown of GTSE1 decreased cell proliferation, cell migration, and cell invasion in H460 and A549 cells. Furthermore, knockdown of GTSE1 regulated the cell cycle and promoted cell apoptosis in H460 and A549 cells. Finally, we presented that GTSE1 was able to activate AKT/mTOR signaling in H460 and A549 cells. In conclusion, these results indicated that the overexpressed GTSE1 was involved in the progress of lung cancer by promoting proliferation migration and invasion and inhibiting apoptosis of lung cancer cells via activating AKT/mTOR signaling.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 638
Author(s):  
Kittipong Sanookpan ◽  
Nongyao Nonpanya ◽  
Boonchoo Sritularak ◽  
Pithi Chanvorachote

Cancer metastasis is the major cause of about 90% of cancer deaths. As epithelial-to-mesenchymal transition (EMT) is known for potentiating metastasis, this study aimed to elucidate the effect of ovalitenone on the suppression of EMT and metastasis-related behaviors, including cell movement and growth under detached conditions, and cancer stem cells (CSCs), of lung cancer cells. Methods: Cell viability and cell proliferation were determined by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazo-liumbromide (MTT) and colony formation assays. Cell migration and invasion were analyzed using a wound-healing assay and Boyden chamber assay, respectively. Anchorage-independent cell growth was determined. Cell protrusions (filopodia) were detected by phalloidin-rhodamine staining. Cancer stem cell phenotypes were assessed by spheroid formation. The proteins involved in cell migration and EMT were evaluated by Western blot analysis and immunofluorescence staining. Results: Ovalitenone was used at concentrations of 0–200 μM. While it caused no cytotoxic effects on lung cancer H460 and A549 cells, ovalitenone significantly suppressed anchorage-independent growth, CSC-like phenotypes, colony formation, and the ability of the cancer to migrate and invade cells. The anti-migration activity was confirmed by the reduction of filopodia in the cells treated with ovalitenone. Interestingly, we found that ovalitenone could significantly decrease the levels of N-cadherin, snail, and slug, while it increased E-cadherin, indicating EMT suppression. Additionally, the regulatory signaling of focal adhesion kinase (FAK), ATP-dependent tyrosine kinase (AKT), the mammalian target of rapamycin (mTOR), and cell division cycle 42 (Cdc42) was suppressed by ovalitenone. Conclusions: The results suggest that ovalitenone suppresses EMT via suppression of the AKT/mTOR signaling pathway. In addition, ovalitenone exhibited potential for the suppression of CSC phenotypes. These data reveal the anti-metastasis potential of the compound and support the development of ovalitenone treatment for lung cancer therapy.


Author(s):  
Jiongwei Pan ◽  
Gang Huang ◽  
Zhangyong Yin ◽  
Xiaoping Cai ◽  
Enhui Gong ◽  
...  

AbstractSignificantly high-expressed circFLNA has been found in various cancer cell lines, but not in lung cancer. Therefore, this study aimed to explore the role of circFLNA in the progression of lung cancer. The target gene of circFLNA was determined by bioinformatics and luciferase reporter assay. Viability, proliferation, migration, and invasion of the transfected cells were detected by CCK-8, colony formation, wound-healing, and transwell assays, respectively. A mouse subcutaneous xenotransplanted tumor model was established, and the expressions of circFLNA, miR-486-3p, XRCC1, CYP1A1, and related genes in the cancer cells and tissues were detected by RT-qPCR, Western blot, or immunohistochemistry. The current study found that miR-486-3p was low-expressed in lung cancer. MiR-486-3p, which has been found to target XRCC1 and CYP1A1, was regulated by circFLNA. CircFLNA was located in the cytoplasm and had a high expression in lung cancer cells. Cancer cell viability, proliferation, migration, and invasion were promoted by overexpressed circFLNA, XRCC1, and CYP1A1 but inhibited by miR-486-3p mimic and circFLNA knockdown. The weight of the xenotransplanted tumor was increased by circFLNA overexpression yet reduced by miR-486-3p mimic. Furthermore, miR-486-3p mimic reversed the effect of circFLNA overexpression on promoting lung cancer cells and tumors and regulating the expressions of miR-486-3p, XRCC1, CYP1A1, and metastasis/apoptosis/proliferation-related factors. However, overexpressed XRCC1 and CYP1A1 reversed the inhibitory effect of miR-486-3p mimic on cancer cells and tumors. In conclusion, circFLNA acted as a sponge of miR-486-3p to promote the proliferation, migration, and invasion of lung cancer cells in vitro and in vivo by regulating XRCC1 and CYP1A1.


2021 ◽  
Vol 22 (11) ◽  
pp. 5820
Author(s):  
Cheng Zeng ◽  
Tingting Zou ◽  
Junyan Qu ◽  
Xu Chen ◽  
Suping Zhang ◽  
...  

Mitophagy plays a pro-survival or pro-death role that is cellular-context- and stress-condition-dependent. In this study, we revealed that cyclovirobuxine D (CVB-D), a natural compound derived from Buxus microphylla, was able to provoke mitophagy in lung cancer cells. CVB-D-induced mitophagy potentiates apoptosis by promoting mitochondrial dysfunction. Mechanistically, CVB-D initiates mitophagy by enhancing the expression of the mitophagy receptor BNIP3 and strengthening its interaction with LC3 to provoke mitophagy. Our results further showed that p65, a transcriptional suppressor of BNIP3, is downregulated upon CVB-D treatment. The ectopic expression of p65 inhibits BNIP3 expression, while its knockdown significantly abolishes its transcriptional repression on BNIP3 upon CVB-D treatment. Importantly, nude mice bearing subcutaneous xenograft tumors presented retarded growth upon CVB-D treatment. Overall, we demonstrated that CVB-D treatment can provoke mitophagy and further revealed that the p65/BNIP3/LC3 axis is one potential mechanism involved in CVB-D-induced mitophagy in lung cancer cells, thus providing an effective antitumor therapeutic strategy for the treatment of lung cancer patients


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Yu Zhong ◽  
Liting Yang ◽  
Fang Xiong ◽  
Yi He ◽  
Yanyan Tang ◽  
...  

AbstractActin filament associated protein 1 antisense RNA 1 (named AFAP1-AS1) is a long non-coding RNA and overexpressed in many cancers. This study aimed to identify the role and mechanism of AFAP1-AS1 in lung cancer. The AFAP1-AS1 expression was firstly assessed in 187 paraffin-embedded lung cancer and 36 normal lung epithelial tissues by in situ hybridization. The migration and invasion abilities of AFAP1-AS1 were investigated in lung cancer cells. To uncover the molecular mechanism about AFAP1-AS1 function in lung cancer, we screened proteins that interact with AFAP1-AS1 by RNA pull down and the mass spectrometry analyses. AFAP1-AS1 was highly expressed in lung cancer clinical tissues and its expression was positively correlated with lung cancer patients’ poor prognosis. In vivo experiments confirmed that AFAP1-AS1 could promote lung cancer metastasis. AFAP1-AS1 promoted lung cancer cells migration and invasion through interacting with Smad nuclear interacting protein 1 (named SNIP1), which inhibited ubiquitination and degradation of c-Myc protein. Upregulation of c-Myc molecule in turn promoted the expression of ZEB1, ZEB2, and SNAIL gene, which ultimately enhanced epithelial to mesenchymal transition (EMT) and lung cancer metastasis. Understanding the molecular mechanism by which AFAP1-AS1 promotes lung cancer’s migration and invasion may provide novel therapeutic targets for lung cancer patients’ early diagnosis and therapy.


2018 ◽  
Vol 19 (10) ◽  
pp. 3213 ◽  
Author(s):  
Hye-Jin Sung ◽  
Jung-Mo Ahn ◽  
Yeon-Hee Yoon ◽  
Sang-Su Na ◽  
Young-Jin Choi ◽  
...  

As lung cancer shows the highest mortality in cancer-related death, serum biomarkers are demanded for lung cancer diagnosis and its treatment. To discover lung cancer protein biomarkers, secreted proteins from primary cultured lung cancer and adjacent normal tissues from patients were subjected to LC/MS–MS proteomic analysis. Quiescin sulfhydryl oxidase (QSOX1) was selected as a biomarker candidate from the enriched proteins in the secretion of lung cancer cells. QSOX1 levels were higher in 82% (51 of 62 tissues) of lung cancer tissues compared to adjacent normal tissues. Importantly, QSOX1 serum levels were significantly higher in cancer patients (p < 0.05, Area Under curve (AUC) = 0.89) when measured by multiple reaction monitoring (MRM). Higher levels of QSOX1 were also uniquely detected in lung cancer tissues, among several other solid cancers, by immunohistochemistry. QSOX1-knock-downed Lewis lung cancer (LLC) cells were less viable from oxidative stress and reduced migration and invasion. In addition, LLC mouse models with QSOX1 knock-down also proved that QSOX1 functions in promoting cancer metastasis. In conclusion, QSOX1 might be a lung cancer tissue-derived biomarker and be involved in the promotion of lung cancers, and thus can be a therapeutic target for lung cancers.


Sign in / Sign up

Export Citation Format

Share Document