scholarly journals Biosorption of Mercury Ion (Hg2+) using Live and Dead Cells of Rhizopus oryzae and Aspergillus niger : Characterization, Kinetic and Isotherm Studies

2020 ◽  
Vol 14 (3) ◽  
pp. 1749-1760
Author(s):  
Siti Nur Izzati Saiful Anuar ◽  
Farhana Othman ◽  
Tay Chia Chay ◽  
Nor Atikah Husna Ahmad Nasir

Mercury ions (Hg2+) are usually being discharged into water bodies without proper treatment. It is toxic, non-biodegradable and persistent naturally which leads to serious environmental problems. Through microbial approach, this study compares the efficiency of two types of fungi: R. oryzae and A. niger of common biosorption fungi in absorbing Hg2+ based on FTIR analysis, kinetic and isotherm studies. Both fungi were prepared into two forms which are live and dead biomass; and the Hg2+ was prepared at 10 and 100 ppm. FTIR analysis has identified existing functional group of hydroxyl, carboxylic and amino functional groups from both fungi, which are important in attracting Hg2+ ion. On average, 60-90% of Hg2+ was removed by both live and dead biomass of R. oryzae and A. niger at 10 and 100 ppm. Meanwhile, the highest sorption was achieved by dead cells of R. oryzae which is up to 90.38% at 100 ppm. In terms of kinetic studies, experimental data fitted to the Pseudo-second-order kinetic model, with correlation coefficient, R2 (0.9997), and Langmuir isotherm, which means the absorption process occurs on the homogenous surface that corresponds to the monolayer formation. Through these findings, the dead cells of A. niger and R. oryzae are better in sorption of Hg2+ compared to the live cells. Meanwhile, the rate of biosorption by R. oryzae is higher compared to A. niger. However, both fungi are excellent in biosorption of Hg2+ ions and could be an alternative to current physico-chemical methods used.

2020 ◽  
Vol 32 (3) ◽  
pp. 508-514
Author(s):  
Vinay Kumar Chintalapudi ◽  
Ramya Krishna S.L. Kanamarlapudi ◽  
Useni Reddy Mallu ◽  
Sudhamani Muddada

In the present study, initially Aspergillus niger was tested for biosorption of Pb(II) ions and then studied the effect of pretreatment for enhanced biosorption. It was found that the maximum biosorption potential was achieved with citric acid treatment (70.56 %) in comparison with the biomass without treatment (65.46 %) at a biosorbent dose of 20 mg/L, pH 4, 100 rpm, 37 ºC for 8 h. The optimized conditions for treated Aspergillus niger were determined by optimizing the biosorption parameters such as pH, temperature, biomass dose, incubation time and agitation speed. This study indicates that the citric acid treated Aspergillus niger is an effective biosorbent for removal of lead (II) at optimized conditions with the maximum biosorption potential of 83.6 % as compared to previous reported work. SEM-EDX and FTIR analysis showed the structural variations and the functional groups involved in lead biosorption, respectively. Biosorption kinetics showed that pseudo second order kinetic model as the better fit.


Author(s):  
Mohamed Nasser Sahmoune ◽  
Krim Louhab ◽  
Aissa Boukhiar

Dead streptomyces rimosus was found to be an effective biosorbent for the removal of chromium from industrial tanning effluents. A sorption level of 65 mg/g was observed at pH 4.8 while the precipitation effect augmented this value at a higher pH range. Chromium desorption increased with decreasing desorption agents pH (including HCl and H2SO4) to a maximum value of 95% at approximately zero pH. The biosorption data of trivalent chromium by streptomyces rimosus has been used for kinetic studies based on fractional power, Elovich, pseudo-first order and pseudo-second order rate expressions. The time-dependent Cr (III) biosorption data were well-described by a pseudo-second-order kinetic model. The intraparticle diffusion is not the rate-limiting step for the whole reaction. It was found that the biosorption equilibrium data fit well with the Langmuir model.


Author(s):  
Xiaochun Yin ◽  
Nadi Zhang ◽  
Meixia Du ◽  
Hai Zhu ◽  
Ting Ke

Abstract In this paper, a series of bio-adsorbents (LR-NaOH, LR-Na2CO3 and LR-CA) were successfully prepared by modifying Licorice Residue with NaOH, Na2CO3 and citric acid, which were used as the adsorbents to remove Cu2+ from wastewater. The morphology and structure of bio-adsorbents were characterized by Fourier Transform Infrared, SEM, TG and XRD. Using static adsorption experiments, the effects of the adsorbent dosage, the solution pH, the adsorption time, and the initial Cu2+ concentration on the adsorption performance of the adsorbents were investigated. The results showed that the adsorption process of Cu2+ by the bio-adsorbents can be described by pseudo-second order kinetic model and the Langmuir model. The surface structure of the LR-NaOH, LR-Na2CO3 and LR-CA changed obviously, and the surface-active groups increased. The adsorption capacity of raw LR was 21.56 mg/g, LR-NaOH, LR- Na2CO3 significantly enhanced this value up to 43.65 mg/g, 43.55 mg/g, respectively. After four adsorption-desorption processes, the adsorption capacity of LR-NaOH also maintained about 73%. Therefore, LR-NaOH would be a promising adsorbent for removing Cu2+ from wastewater, and the simple strategy towards preparation of adsorbent from the waste residue can be as a potential approach using in the water treatment.


2010 ◽  
Vol 171-172 ◽  
pp. 41-44
Author(s):  
Xiao Cun Xiao ◽  
Gai Xia Fang ◽  
Er Li Zhao ◽  
Lv Bin Zhai ◽  
Jun Shuai Shi

The objective of this study is to assess the environmentaly friendly Ni(II) adsorption from synthetic wastewater using Pseudomonas alcaligenes biomass (PA-2). The ability of PA-2 to remove the Ni(II) ions was investigated by using batch biosorption procedure. The effects such as pH, dosage of biosorbent, Ni(II) initial concentration and sorbate–sorbent contact time and agitating speed on the adsorption capacities of PA-2 were studied. Biosorption equilibriums were rapidly established in about 60 min and the adsorption kinetics followed the pseudo-second order kinetic model. The maximum Ni(II) adsorption capacity determined from Langmuir isotherm were 82.23 mg/g PA-2 at pH 5.0, at 25±2°C and shaker speed 150 rpm, respectively. The carboxyl , hydroxyl and amino groups of the PA-2 were involved in chemical interaction with the Ni(II) ions depicted by Fourier transform infrared spectroscopic (FTIR) results. The study points to the potential of new use of Pseudomonas alcaligenes biomass as an effective biosorbent for the removal of Ni(II) and from environmental and industrial wastewater.


2014 ◽  
Vol 955-959 ◽  
pp. 2534-2538
Author(s):  
Jun Chen Zou ◽  
Xiao Yan Liu ◽  
Wen Bo Chai ◽  
Xin Ying Zhang ◽  
Yu Sen Liu

Pomelo peel was esterified with acetic anhydride using 4-dimethyl-amino pyridine as a catalyst under reaction temperature of 60 °C and duration of 3 h. At 0.1 g 4-dimethyl-amino pyridine of the catalyst in 80 ml acetic anhydride, the highest sorption values of 14.95 g/g diesel and 18.39 g/g lubricating oil were achieved, which was found to be much higher than raw pomelo peel. FTIR and SEM studies produced evidence for acetylation. The sorption kinetics and reusability were studied. The kinetic studies show good correlation coefficients for a pseudo-second-order kinetic model. This work demonstrated that pomelo peel modified by acetic anhydride is an efficient and environment-friendly biosorbent for the removal of spilled oil.


2014 ◽  
Vol 1043 ◽  
pp. 219-223 ◽  
Author(s):  
Noor Shawal Nasri ◽  
Jibril Mohammed ◽  
Muhammad Abbas Ahmad Zaini ◽  
Usman Dadum Hamza ◽  
Husna Mohd. Zain ◽  
...  

Concern about environmental protection has increased over the years and the presence of volatile organic compounds (VOCs) in water poses a threat to the environment. In this study, coconut shell activated carbon (PHAC) was produced by potassium hydroxide activation via microwave for benzene and toluene removal. Equilibrium data were fitted to Langmuir, Freundlich and Tempkin isotherms with all the models having R2 > 0.94. The equilibrium data were best fitted by Langmuir isotherm, with maximum adsorption capacity of 212 and 238mg/g for benzene and toluene, respectively. The equilibrium parameter (RL) falls between 0 and 1 confirming the favourability of the Langmuir model. Pseudo-second-order kinetic model best fitted the kinetic data. The PHAC produced can be used to remediate water polluted by VOCs.


2021 ◽  
Vol 309 ◽  
pp. 01077
Author(s):  
M Tukaram Bai ◽  
Ch. I. A. Raju ◽  
V Sridevi ◽  
Nalluri Chittibabu ◽  
P Venkateswarlu

Biosorption of lead onto Fallen Coffee Plant leaves (FCPL) powder from an aqueous solution was studied in the present study. The characterization of FCPL powder was done by FTIR, XRD, SEM and BET. The equilibrium agitation time for lead biosorption is 60 min. The optimum pH and dosage values are 5.2 and 20 g/L respectively. In the range of variables studied, percentage biosorption is increased from 75.1 to 95.5 %. The maximum uptake capacity of 3.664 mg/g is obtained at 303 K. In the present investigation the equilibrium data was well explained by Langmuir, Redlich-Peterson with a correlation coefficient of 0.99, and followed by Temkin and Freundlich isotherms. The kinetic studies reveal that the biosorption system obeyed the pseudo second order kinetic model by considering the correlation coefficient value as 0.99. From the values of ∆S, ∆H and ∆G it is observed that the biosorption of lead onto Fallen coffee plant leaves(FCPL) powder was irreversible, endothermic and spontaneous.


Author(s):  
X. Tang ◽  
J. Luo ◽  
L. Wang ◽  
X. Li

The uptake of Co(II) on graphene oxide (GO) by an adsorption process as a function of pH and ionic strength in the absence and presence of humic acid (HA) or fulvic acid (FA) was studied using batch technique. The results indicated that the uptake is strongly dependent on pH but independent of ionic strength. A stimulative effect of HA/FA on Co(II) uptake was found at pH < 7.0, whereas an inhibitory effect was observed at pH > 7.0. Kinetic studies suggest that Co(II) uptake on GO could be described more favorably by the pseudo-second-order kinetic model. The uptake isotherms can be described better by the Langmuir, Freundlich, and D-R models than by the linear model. The thermodynamic data calculated from the temperature-dependent uptake isotherms suggests that the uptake of Co(II) on GO is spontaneous and endothermic. Results of this work are of great importance for the environmental application of GO in the treatment of Co(II) from wastewater and indicated that GO is promising for the natural attenuation of Co(II) and related metal ions from aqueous solution.


2016 ◽  
Vol 54 ◽  
pp. 42-57 ◽  
Author(s):  
Kassahun Dejene ◽  
Khalid Siraj ◽  
Shimeles Addisu Kitte

This study was aimed for removal of phenol from water using activated carbon synthesize from avocado kernel seeds by adsorption onto it. For adsorption process cleaned and washed avocado kernel seeds (Persea americana) were dried at 100°C in an oven overnight and carbonization was carried out by increasing the furnace temperature at a rate of 5 °C/min to a final temperature of 800 °C for 160 minutes. Then, the activated carbon was powdered and sieved, washed with distilled water until the solution pH reached 7.0. Optimization of activated carbon was performed through effects of solution pH, contact time; initial phenol concentration and temperature of the adsorption. The kinetic studies of the adsorption process were achieved by verifying various models and the data obtained was best fitted to pseudo-second-order kinetic model. The isotherms models were analyzed with Langmuir, Freundlich and Temkin to validate the adsorption process. It was found that Langmuir model was best fitted to the obtained result for both adsorbents.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 697 ◽  
Author(s):  
Francisco Alguacil ◽  
Lorena Alcaraz ◽  
Irene García-Díaz ◽  
Félix López

This work describes the adsorption of Pb2+ in aqueous solution onto an activated carbon (AC) produced from winemaking waste (cluster stalks). After characterizing the AC using Fourier transform infrared spectroscopy (FTIR) and micro-Raman spectroscopy, the influence of different physico-chemical factors (stirring rate, temperature, pH, adsorbent concentration, etc.) on its capacity to adsorb Pb2+ was examined. Kinetic and thermodynamic studies showed that the adsorption of the Pb2+ follows a pseudo-second-order kinetic model and fits the Langmuir isotherm model, respectively. The maximum adsorption capacity of the AC was 58 mg/g at 288 K temperature and pH of 4. In conclusion, ACs made from waste cluster stalks could be successfully used to remove Pb2+ from polluted water.


Sign in / Sign up

Export Citation Format

Share Document