Self-Compacting Concrete Containing Plastic Bag Waste Fibers Partially Replace by Sand

Author(s):  
Mohit Gupta

Abstract: The production of self-compacting concrete SCC is a relatively new technology. Nowadays, the production of SCC is becoming more popular. However, the production of SCC requires more sensitive and efficient workmanship and equipment. This research presents the fresh and hardened properties of self-compacting concrete (SCC) containing plastic bag waste fibers (PBWF). Fibers were prepared by using waste plastic bags. Plastic bag waste fibers (PBWF) are used in varying percentages of fibers (0.5, 1, and 1.5%) replacement by weight of fine aggregate. L-box, U-box, and V-box tests were performed to assess the fresh properties of the prepared mixtures. The compressive strength of the concrete(M-30) was determined. Test results show that mixtures based on PBWF with 0.5%, 1%, and 1.5% met the criteria of self-compactibility (evaluated by U -box, L-box, and V-box) regardless of the fibers content. This research consists of (i) the development of a suitable mix for SCC containing PBWF that would satisfy the requirements of the workability; (ii) casting of concrete samples and testing them for compressive strength for 7days, 14days, and 28days.

2015 ◽  
Vol 754-755 ◽  
pp. 468-472 ◽  
Author(s):  
Chao Lung Hwang ◽  
Trong Phuoc Huynh

This work investigates the possibility of using fly ash (FA) and Vietnam residual rice husk ash (RHA) in producing unfired building bricks with applying densified mixture design algorithm (DMDA) method. In this research, little amount of cement was added into the mixtures as binder substitution. Unground rice husk ash (URHA), an agricultural by-product, was used as partial fine aggregate replacement (10% and 30%) in the mixtures. The solid bricks of 220×105×60 mm in size were prepared in this study. The hardened properties of the bricks were investigated including compressive strength, flexural strength and water absorption according to corresponding Vietnamese standards. Forming pressure of 35 MPa was applied to form the solid bricks in the mold. The test results show that all brick specimens obtained good mechanical properties, which were well conformed to Vietnamese standard. Compressive strength and flexural strength of the bricks were respectively in range of 13.81–22.06 MPa and 2.25–3.47 MPa. It was definitely proved many potential applications of FA and RHA in the production of unfired building bricks.


This paper explains the combined effect of granite cutting waste and recycled concrete on the workability and mechanical properties of self compacting concrete. Experimental plan is divided in such a way that granite cutting waste is replaced with fine aggregate at 0, 20,40,60,80 and 100% proportions. Recycled concrete is replaced with the coarse aggregate starting from 20 to 100%. Total 36 mixes were designed to check the fresh and hardened properties. Slump flow and T500, v-funnel and L-box test are conducted to know the flow ability and passing ability of concrete. To study the hardened properties compressive strength, flexural strength test values are to be collected.


2019 ◽  
Vol 9 (6) ◽  
pp. 4901-4904
Author(s):  
A. Saand ◽  
K. A. Jamali ◽  
M. A. Keerio ◽  
T. Ali ◽  
N. Bhatti

This paper presents the fresh properties of Self-Compacting Concrete (SCC) containing metakaolin (MK) produced by calcination of the natural material soorh of district Thatta Sind in Pakistan. Five mixes were tested, including four MK mixes replacing 5-20% of cement, with 0.38 water/binder (W/B) ratio. The fresh properties of the SCCs were evaluated using slump flow, T50, V-funnel, J ring, L-box and sieve segregation tests. Compressive strength of the control and the MK SCC was also investigated. The fresh concrete test results revealed that SCC could be developed by substituting cement with local MK, using 2% superplasticizers and without using a viscosity-modifying amplifier. The SCC with 15% replacement of cement with local MK showed maximum compressive strength, which was 10.39% higher than the control specimen’s without MK.


2014 ◽  
Vol 567 ◽  
pp. 428-433 ◽  
Author(s):  
Bashar S. Mohammed ◽  
Muhammad Hafiz Baharun ◽  
Muhd Fadhil Nuruddin ◽  
Odu Paul Duku Erikol ◽  
Nadhir Abdulwahab Murshed

The aim of the research is to develop engineered cementitious composite mixtures satisfying the self-compacting concrete requirements and to evaluate the hardened properties of self-compacted ECC mixtures. To enhance the concrete performance, PVA is used. The PVA improved some characteristics and properties of the concrete. Ten mixes with different Polyvinyl Alcohol (PVA) fiber contents (0.0%, 1.0%, 1.5%, 2.0%, 2.5%, 3.0%, 3.5%, 4.0%, 4.5% and 5.0%) have been prepared. Three cubes (100mm x 100mm x 100mm), three beams (100mm x 100mm x 500mm) and three cylinders (150mm diameter and 300mm height) have been cast for each mix and tested at the age of 7 and 28 days for compressive strength and at age of 28 days for splitting and flexural strength. The V-funnel, L-box and slump test also have been conducted to access the fresh properties like workability and flowability of the concrete. The results indicated the increase in the strength of the concrete and the formulas for predicting the compressive, splitting and flexural strength from PVA (%) has been developed.


2020 ◽  
Vol 17 (4) ◽  
pp. 473-480
Author(s):  
Hakas Prayuda ◽  
Fanny Monika ◽  
Martyana Dwi Cahyati

Purpose This study aims to discuss the results of fresh properties and compressive strength of self-compacting concrete using ingredients added red brick powder as a fine aggregate substitute. The results of the study were compared with the properties of fresh properties and compressive strength with ingredients added by rice husk ash, which is also a fine aggregate substitute. In addition, the initial compressive strength of each of these variations was also examined to accelerate the completion time of construction projects using self-compacting concrete. Design/methodology/approach This research was conducted in a laboratory by testing the characteristics of fresh and hardened properties of self-compacting concrete. Findings Fresh properties testing is carried out in the form of V-funnel, flow table, J-ring and L-box where all specimens produce quite varied flow rates. Compressive strength was estimated at ages 3, 7, 14 and 28 days with cylindrical specimens with a diameter of 150 mm and a height of 300 mm. The variation of fine aggregate substitutes used is 20, 40 and 60 per cent. Originality/value From the results of the compressive strength, it can be concluded that the added material is categorized as self-compacting concrete with high initial compressive strength, while at 28 days, the compressive strength test results are categorized as high-strength self-compacting concrete.


2014 ◽  
Vol 567 ◽  
pp. 381-386 ◽  
Author(s):  
Nasir Shafiq ◽  
Muhd Fadhil Nuruddin ◽  
Ali Elheber Ahmed Elshekh ◽  
Ahmed Fathi Mohamed Salih

In order to improve the mechanical properties of high strength concrete, HSC, several studies have been conducted using fly ash, FA. Researchers have made it possible to achieve 100-150MPa high strength concrete. Despite the popularity of this FAHSC, there is a major shortcoming in that it becomes more brittle, resulting in less than 0.1% tensile strain. The main objective of this work was to evaluate the fresh and hardened properties of FAHSC utilizing chopped basalt fiber stands, CBFS, as an internal strengthening addition material. This was achieved through a series of experimental works using a 20% replacement of cement by FA together with various contents of CBFS. Test results of concrete mixes in the fresh state showed no segregation, homogeneousness during the mixing period and workability ranging from 60 to 110 mm. Early and long terms of compressive strength did not show any improvement by using CBFS; in fact, it decreased. This was partially substituted by the effect of FA. Whereas, the split and flexural strengths of FASHC were significantly improved with increasing the content of CBFS as well as the percentage of the split and flexural tensile strength to the compressive strength. Also, test results showed a progressive increase in the areas under the stress-strain curves of the FAHSC strains after the CBFS addition. Therefore, the brittleness and toughness of the FAHSC were enhanced and the pattern of failure moved from brittle failure to ductile collapse using CBFS. It can be considered that the CBFS is a suitable strengthening material to produce ductile FAHSC.


Author(s):  
Harish R ◽  
Ramesh S ◽  
Tharani A ◽  
Mageshkumar P

This paper presents the results of an experimental investigation of the compressive strength of concrete cubes containing termite mound soil. The specimens were cast using M20 grade of concrete. Two mix ratios for replacement of sand and cement are of 1:1.7:2.7 and 1:1.5:2.5 (cement: sand: aggregate) with water- cement ratio of 0.45 and varying combination of termite mound soil in equal amount ranging from 30% and 40% replacing fine aggregate (sand) and cement from 10%,15%,20% were used. A total of 27 cubes, 18 cylinders and 6 beams were cast by replacing fine aggregate, specimens were cured in water for 7,14 and 28 days. The test results showed that the compressive strength of the concrete cubes increases with age and decreases with increasing percentage replacement of cement and increases with increasing the replacement of sand with termite mound soil cured in water. The study concluded that termite mound cement concrete is adequate to use for construction purposes in natural environment.


2021 ◽  
Vol 894 ◽  
pp. 95-101
Author(s):  
Sepehr Ghafari ◽  
Fereidoon Moghadas Nejad ◽  
Ofelia Corbu

In this research, a sustainable approach is followed to develop efficient mixtures incorporating recycled fine aggregate (RFA) remained from structure demolition as well as limestone filler (LF) from production of hot mix asphalt (HMA). The LF is a byproduct of the drying process in HMA production plant which is not entirely consumed in the production of the HMA and must be hauled and disposed in landfills. The maximum particle size of the LF is approximately 40 µm. Self-Compacting Concrete (SCC) mixtures were designed replacing 5% and 10% of the cement with LF. Incorporation of 50%, and 100% RFA with the fines in the mixtures were considered with and without addition of the LF. Due to the formwork and prefabrication restrictions, the paste volume and the high range water reducer content were tuned in such a way that the slump flow of the mixtures remained between 660 mm to 700 mm without segregation. Durability and mechanical performance of the mixtures were evaluated by resistance against freeze-thaw scaling exposed to deicing agents and compressive strength. It was observed that the SCC mixtures containing 10% LF outperformed those without the use of LF while 5% SCC mixtures did not exhibit tangible superiority. Incorporation of RFA as the fine fraction degraded the durability of all the mixtures. While replacing all the fine fraction with RFA significantly impaired durability and compressive strength, 50% RF mixtures could be designed containing 10% LF that remained in the allowable limits.


2010 ◽  
Vol 168-170 ◽  
pp. 1325-1329
Author(s):  
Ye Ran Zhu ◽  
Jun Cai ◽  
Dong Wang ◽  
Guo Hong Huang

This paper investigates the mechanical properties (compressive strength, splitting tensile strength and flexural toughness) of polypropylene fiber reinforced self-compacting concrete (PFRSCC). The effect of the incorporation of polypropylene fiber on the mechanical properties of PFRSCC is determined. Four point bending tests on beam specimens were performed to evaluate the flexural properties of PFRSCC. Test results indicate that flexural toughness and ductility are remarkably improved by the addition of polypropylene fiber.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 940
Author(s):  
Se-Jin Choi ◽  
Young-Uk Kim ◽  
Tae-Gue Oh ◽  
Bong-Suk Cho

The shortage of natural aggregates has recently emerged as a serious problem owing to the tremendous growth of the concrete industry. Consequently, the social interest in identifying aggregate materials as alternatives to natural aggregates has increased. In South Korea’s growing steel industry, a large amount of steel slag is generated and discarded every year, thereby causing environmental pollution. In previous studies, steel slag, such as blast furnace slag (BFS), has been used as substitutes for concrete aggregates; however, few studies have been conducted on concrete containing both BFS and Ferronickel slag (FNS) as the fine aggregate. In this study, the compressive strength, chloride ion penetrability, and carbonation characteristic of concrete with both FNS and BFS were investigated. The mixed slag fine aggregate (MSFA) was used to replace 0, 25%, 50%, 75%, and 100% of the natural fine aggregate volume. From the test results, the highest compressive strength after 56 days was observed for the B/F100 sample. The 56 days chloride ion penetrability of the B/F75, and B/F100 samples with the MSFA contents of 75% and 100% were low level, approximately 34%, and 54% lower than that of the plain sample, respectively. In addition, the carbonation depth of the samples decreased with the increase in replacement ratio of MSFA.


Sign in / Sign up

Export Citation Format

Share Document