scholarly journals Comparable Expressions of Bacillus species on Different Growth Media

Author(s):  
Emoleila Itoandon

Abstract: An investigation was carried out using Pikovskaya Broth (PKB), Luria Bertani Broth (LBB), and Peptone Water (PW) to analyse growth expressions of constructed Bacillus subtilis sub sp and compared to a commercial Bacillus subtilis RIK 1285. The aim was to determine the effect of carbon, nitrogen and other elements at different variations on the metabolic activities under different conditions. The results obtained showed growth density of 4.1 g/ml at 70oC and 3.1 g/ml at pH 6.0; 3.3 g/ml at 70oC and 2.8 g/ml at pH 6.0; 3.8 g/ml at 60oC and 2.6 g/ml at pH 7.0 from PKB, LBB and PW respectively. The growth density of the commercial strain recorded 3.8 g/ml at 50oC and 2.8 g/ml at pH 7.0; 3.1 g/ml at 50oC and 2.3 g/ml; 3.0 at 50oC and 2.3 at pH respectively. The investigation showed importance and relevance of gene metabolic upgrade on the utilization of multiple nutrients present from one media to another. Keywords: media formulation, microbial reaction, growth promoters, growth density

Author(s):  
Oluwaseyi Samuel Olanrewaju ◽  
Modupe Stella Ayilara ◽  
Ayansina Segun Ayangbenro ◽  
Olubukola Oluranti Babalola

AbstractBacillus species genomes are rich in plant growth-promoting genetic elements. Bacillus subtilis and Bacillus velezensis are important plant growth promoters; hence, to further improve their abilities, the genetic elements responsible for these traits were characterized and reported. Genetic elements reported include those of auxin, nitrogen fixation, siderophore production, iron acquisition, volatile organic compounds, and antibiotics. Furthermore, the presence of phages and antibiotic-resistant genes in the genomes are reported. Pan-genome analysis was conducted using ten Bacillus species. From the analysis, pan-genome of Bacillus subtilis and Bacillus velezensis are still open. Ultimately, this study brings an insight into the genetic components of the plant growth-promoting abilities of these strains and shows their potential biotechnological applications in agriculture and other relevant sectors.


Nematology ◽  
2021 ◽  
pp. 1-17
Author(s):  
Ilzé Horak ◽  
Peet J. Jansen van Rensburg ◽  
Sarina Claassens

Summary Globally, root-knot nematode (RKN) infestations cause great financial losses. Although agrochemicals are used to manage these pests, there is increased interest in using biocontrol agents based on natural antagonistic microorganisms, such as Bacillus. These nematicidal bacteria demonstrate antagonism towards RKN through different modes of action, including specialised metabolite production. The aim of this study was to compare metabolite profiles of nematicidal Bacillus species and assess the influence of cultivation conditions on these profiles. Two hyphenated metabolomics platforms, gas chromatography-mass spectrometry (GC-MS) and liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF-MS), were employed to profile and compare metabolite features produced during the cultivation of three nematicidal Bacillus species (Bacillus firmus, B. cereus and B. soli) in complex Luria-Bertani broth (LB) and a simpler minimal broth (MB), at three different temperatures (25, 30 and 37°C). Cultivation in complex LB as opposed to simpler MB resulted in the production of more statistically significant metabolite features. Selected temperatures in this study did not have a significant influence on metabolite profiles. Moreover, media-specific influences outweighed temperature-specific influences on metabolite profiles. Results from this study are a valuable first step in establishing suitable cultivation conditions for the production of Bacillus metabolites of interest.


Author(s):  
Swathy Krishna Jayalekshmi ◽  
Arya Radhakrishnan Krishna ◽  
Trisha Mary Pandipilly Antony ◽  
Suganthi Ramasamy

Foodborne pathogens are the main threat and cause of food poisoning. The majority of food infections have been related to the biofilm formation of foodborne pathogens in the food industry. Shewanella putrefaciens (KX355803, GRD 03), a Gram-negative pathogen isolated from mackerel fish, was identified and recognized as a food spoilage bacterium and a strong biofilm producer. The adhesion or attachment ability of Shewanella putrefaciens was determined on steel, plastic, glass, PVC and wood. NB (Nutrient broth), LB (Luria-Bertani broth), TSB (Tryptic soy broth) and BHI (Brain heart infusion broth) were enriched with glucose and shows optimum for bacterial adhesion. In the microtiter plate method (MTP), the strong attachment was observed at 48 and 72 hours of incubation and significant differences were obtained at p < 0.05. As the incubation period increases, the OD value (Optical density) of samples also increase. Biofilm formation is the major cause cross-contamination, and shows resistance to certain disinfectants, which leads to environmental stress tolerance. This study suggested with optimum biofilm production of isolate from fish by using glucose enriched media on different substrates, also comparing different growth media provide a detailed idea about biofilm-forming ability at different incubation time intervals.


2020 ◽  
Vol 21 (3) ◽  
pp. 19-27
Author(s):  
Khalid Hussein Rheima Algharrawi ◽  
Mani Subramanian

In this work, a novel biocatalytic process for the production of 7-methylxanthines from theobromine, an economic feedstock has been developed. Bench scale production of 7-methlxanthine has been demonstrated. The biocatalytic process used in this work operates at 30 OC and atmospheric pressure, and is environmentally friendly. The biocatalyst was E. coli BL21(DE3) engineered with ndmB/D genes combinations. These modifications enabled specific N7- demethylation of theobromine to 7-methylxanthine. This production process consists of uniform fermentation conditions with a specific metabolically engineered strain, uniform induction of specific enzymes for 7-methylxanthine production, uniform recovery and preparation of biocatalyst for reaction and uniform recovery of pure 7-methylxanthine.    Many E. coli BL21(DE3) strains metabolically engineered with single and/or multiple ndmB/D genes were tested for catalytic activity, and the best strains which had the higher activity were chosen to carry out the N-demethylation reaction of theobromine. Strain pBD2dDB had the highest activity for the production of 7-methylxanthine from theobromine. That strain was used to find the optimum amount of cells required to achieve complete conversion of theobromine to 7-methylxanthine within two hours. It was found that the optimum concentration of pBD2dDB strain to achieve 100% conversion of 0.5 mM theobromine to 7-methylxanthine was 5 mg/mL. The cell growth of pBD2dDB strain was studied using two different growth media, (Luria-Bertani Broth and Super Broth). Super broth was found to be the best medium to produce the highest amount of cell paste (1.5 g). Subsequently, the process was scaled up in which 2 L reaction volume was used to produce 7-methylxanthine (100% conversion) from 0.5 mM theobromine catalyzed by pBD2dDB strain. The reactions was carried out at 30 oC and 250 rpm shaker speed, and the reaction medium was 50 mM potassium phosphate buffer (pH=7). 7-methylxanthines was separated by preparative chromatography with high recovery, and the product solution was collected, purified by drying at 120-140 oC for 4 hours and, recovered (127 mg). Purity of the isolated 7-methylxanthine was comparable to authentic standards with no contaminant peaks, as observed by HPLC, LC-MS, and NMR. 


2021 ◽  
Vol 10 (2) ◽  
pp. 186
Author(s):  
Asep Awaludin Prihanto ◽  
Kartika D. Aninta ◽  
Soffi Trisnaningrum

The need for protease in the industrial field has been increasing. Candidates for producing these enzymes can be isolated from the digestive tract of catfish (Clarias sp.). The purpose of this study was to obtain bacterial isolates that produce proteolytic from the gastrointestinal tract of catfish and determine the effect of different production media on the activity of proteolytic. The first step of this study was isolation, screening, and identification of bacteria. The second step was to test the effect of the media Luria Bertani, trypticase soy broth, and skim milk broth on proteolytic activity. Nineteen isolates were obtained from the screening process of proteolytic bacteria. Isolate no 1, was known as the best isolate in producing enzymes and was known as Bacillus sp. Tests with different growth media gave results that semi-quantitative, nutrient growth media produced the highest activity with a proteolytic index value of 2.09 ± 0.41. In addition, based on quantitative tests, the media Luria Bertani Broth produced the highest specific activity with a value of 36.479 U/mg. The conclusion of this study, Bacillus sp. from the gastrointestinal tract of catfish that cultured on the Luria Bertani Broth medium produced the best activity.


2005 ◽  
Vol 68 (6) ◽  
pp. 1154-1158 ◽  
Author(s):  
PURUSHOTTAM V. GAWANDE ◽  
MANSEL W. GRIFFITHS

In this study, we investigated the effect of starvation on cryotolerance of Escherichia coli O157:H7 grown in tryptic soy broth (TSB) and Luria-Bertani broth (LB). Starved cells (cells suspended in water at 37°C for 6 h) and control cells (cells in TSB or LB) were frozen at −18°C for up to 240 h in their respective growth media. The E. coli grown in TSB showed a greater starvation effect (the difference in percent survival of starved and control cells) and cryotolerance. The starved E. coli grown in TSB showed a 30% increase in their ability to survive frozen storage for 24 h at −18°C. The corresponding increase in survival for LB-grown E. coli was only 3.8%. Cryotolerance induced by starvation of TSB- and LB-grown E. coli was correlated with the expression of genes involved in general stress response pathways, such as uspA, grpE, and rpoS. The expression of uspA, grpE, and rpoS was quantified by measuring the green fluorescence generated from autofluorescent E. coli harboring puspA::gfp, pgrpE::gfp, and prpoS::gfp gene fusions. The results obtained in this study indicate that uspA, grpE, and rpoS were induced on starvation when E. coli was grown in TSB, and their expression correlated well with subsequent induction of cryotolerance developed at −18°C. In contrast, cells grown in LB and subsequently exposed to starvation conditions showed no increase in expression of uspA, grpE, or rpoS, and, as expected, these cells did not exhibit increased cryotolerance at −18°C. Knowledge of molecular mechanisms involved in cross-protection might make it possible to devise strategies to limit their effects and lead to ways to predict the survival of foodborne pathogens in stressful environments.


2020 ◽  
Vol 21 (5) ◽  
pp. 438-450
Author(s):  
Ramya Ramchandran ◽  
Swetha Ramesh ◽  
Anviksha A ◽  
RamLal Thakur ◽  
Arunaloke Chakrabarti ◽  
...  

Background:: Antifungal cyclic lipopeptides, bioactive metabolites produced by many species of the genus Bacillus, are promising alternatives to synthetic fungicides and antibiotics for the biocontrol of human pathogenic fungi. In a previous study, the co- production of five antifungal lipopeptides homologues (designated as AF1, AF2, AF3, AF4 and AF5) by the producer strain Bacillus subtilis RLID 12.1 using unoptimized medium was reported; though the two homologues AF3 and AF5 differed by 14 Da and in fatty acid chain length were found effective in antifungal action, the production/ yield rate of these two lipopeptides determined by High-Performance Liquid Chromatography was less in the unoptimized media. Methods:: In this study, the production/yield enhancement of the two compounds AF3 and AF5 was specifically targeted. Following the statistical optimization (Plackett-Burman and Box-Behnken designs) of media formulation, temperature and growth conditions, the production of AF3 and AF5 was improved by about 25.8- and 7.4-folds, respectively under static conditions. Results:: To boost the production of these two homologous lipopeptides in the optimized media, heat-inactivated Candida albicans cells were used as a supplement resulting in 34- and 14-fold increase of AF3 and AF5, respectively. Four clinical Candida auris isolates had AF3 and AF5 MICs (100 % inhibition) ranging between 4 and 16 μg/ml indicating the lipopeptide’s clinical potential. To determine the in vitro pharmacodynamic potential of AF3 and AF5, time-kill assays were conducted which showed that AF3 (at 4X and 8X concentrations) at 48h exhibited mean log reductions of 2.31 and 3.14 CFU/ml of C. albicans SC 5314, respectively whereas AF5 at 8X concentration showed a mean log reduction of 2.14 CFU/ml. Conclusion:: With the increasing threat of multidrug-resistant yeasts and fungi, these antifungal lipopeptides produced by optimized method promise to aid in the development of novel antifungal that targets disease-causing fungi with improved efficacy.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4008
Author(s):  
Carla Cilliers ◽  
Evans M. N. Chirwa ◽  
Hendrik G. Brink

The objective of the study was to gather insight into the metabolism of lead-removing microorganisms, coupled with Pb(II) removal, biomass viability and nitrate concentrations for Pb(II) bioremoval using an industrially obtained microbial consortium. The consortium used for study has proven to be highly effective at removing aqueous Pb(II) from solution. Anaerobic batch experiments were conducted with Luria-Bertani broth as rich growth medium over a period of 33 h, comparing a lower concentration of Pb(II) with a higher concentration at two different nutrient concentrations. Metabolite profiling and quantification were conducted with the aid of both liquid chromatography coupled with tandem mass spectroscopy (UPLC-HDMS) in a “non-targeted” fashion and high-performance liquid chromatography (HPLC) in a “targeted” fashion. Four main compounds were identified, and a metabolic study was conducted on each to establish their possible significance for Pb(II) bioremoval. The study investigates the first metabolic profile to date for Pb(II) bioremoval, which in turn can result in a clarified understanding for development on an industrial and microbial level.


Sign in / Sign up

Export Citation Format

Share Document