scholarly journals Chemical composition and antibacterial activity of Algerian propolis against fish pathogenic bacteria

2020 ◽  
Vol 10 (2) ◽  
pp. 12-19
Author(s):  
El-Khamsa Soltani ◽  
Kamel Mokhnache ◽  
Samia Mezaache-Aichour ◽  
Noureddine Charef ◽  
Juan Pedro De Haro ◽  
...  

Five different varieties of propolis from four sites from Sétif region (East of Algeria) (Babor, Setif; Ain-Abbassa and El-Hamma), and one site from the center of Algeria (Tizi-Ouzou) were chemically analysed by gas chromatography-mass spectrometry. One hundred and two compounds were identified including aromatic acids, linear hydrocarbons and their acids, terpenes and alcaloïdes. Furthermore, the in vitro bacteriostatic and bactericidal activities of the aqueous extracts were evaluated against one Gram positive (Bacillus subtilis, used as probiotics in aquaculture) and two Gram negative (Vibrio anguillarum and Vibrio harveyi, pathogenic for fish) bacteria. The obtained results showed that all aqueous extracts of propolis inhibit the growth of B. Subtilis while the growth inhibition of fish pathogens was achieved when using higher propolis concentrations. These antibacterial properties would warrant further studies on the clinical applications of propolis in aquaculture field. Keywords: Bactericidal activity; Chemical characterization; Propolis; Vibrio.

Metabolites ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 414 ◽  
Author(s):  
Mario J. Simirgiotis ◽  
Daniel Burton ◽  
Felipe Parra ◽  
Jéssica López ◽  
Patricio Muñoz ◽  
...  

This study aimed to characterize the in vitro antioxidant and antibacterial properties of oregano (Origanum vulgare) essential oil, as well as its chemical composition. To our best knowledge, there are few studies on oregano grown in the arid Andes region, but none on the metabolites produced and their bioactivity. This work identified fifty metabolites by Gas Chromatography–Mass Spectrometry (GC-MS)—monoterpene hydrocarbons, oxygenated monoterpenes, phenolic monoterpenes, sesquiterpene hydrocarbons, and oxygenated sesquiterpenes—present in the essential oil of oregano collected in the Atacama Desert. The main components of essential oregano oil were thymol (15.9%), Z-sabinene hydrate (13.4%), γ-terpinene (10.6%), p-cymene (8.6%), linalyl acetate (7.2%), sabinene (6.5%), and carvacrol methyl ether (5.6%). The antibacterial tests showed that the pathogenic bacteria Staphylococcus aureus and Salmonella enterica and the phytopathogenic bacteria Erwinia rhapontici and Xanthomonas campestris were the most susceptible to oregano oil, with the lowest concentrations of oil necessary to inhibit their bacterial growth. Moreover, oregano oil showed antibacterial activity against bacteria associated with food poisoning. In conclusion, O. vulgare from the arid Andean region possesses an important antibacterial activity with a high potential in the food industry and agriculture.


2020 ◽  
Vol 46 (3) ◽  
pp. 1-9
Author(s):  
Esin BABA ◽  

The use of natural products which have the least harmful effects on the environment has recently been taken as a novel approach against fish diseases. References on in vitro studies have demonstrated antibacterial activity of essential oils (EOs) against certain fish pathogens. The aim of this study was to evaluate the antibacterial effect of some plant essential oils against fish pathogenic bacteria in vitro conditions. Seven plant EOs: lavender (Lavandula angustifolia), clove (Eugenia caryophyllus), peppermint (Mentha piperitae), basil (Ocimum sanctum), rosemary (Rosmarinus officinalis), cinnamon (Cinnamomum zeylanicum) and black cumin (Nigella sativa) were used to identify their antibacterial properties against Yersinia ruckeri, Aeromonas hydrophila, Vibrio anguillarum, Vibrio alginolyticus, Lactococcus garvieae and Vagococcus salmoninarum at five concentrations using disc diffusion method. Especially the EOs of clove, cinnamon and rosemary showed the strongest antibacterial activities than other oils against the three most susceptible bacterial strains (Y. ruckeri, A. hydrophila and V. salmoninarum). Besides, the EOs of clove, rosemary, cinnamon and black cumin showed similar inhibition zones with OTC against A. hydrophila. The minimum inhibitory concentrations of the used EOs found between 500 and 62.5 µl mL-1. As a result, three of the EOs used in this study were effective on both Gr (-) and Gr (+) bacteria.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 703
Author(s):  
Severino Zara ◽  
Giacomo L. Petretto ◽  
Alberto Mannu ◽  
Giacomo Zara ◽  
Marilena Budroni ◽  
...  

The production of saffron spice generates large quantities of plant by-products: over 90% of the plant material collected is discarded, and a consideration fraction of this waste is plant stamens. This work investigated the chemical composition and the antimicrobial activities of the non-polar fraction extracted from four different saffron flower stamens. The chemical composition of ethereal extracts of the saffron stamens was qualitatively assessed by means of gas–chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) analyses. These analyses revealed ethereal extracts to possess a high polyunsaturated fatty acid content. In vitro antibacterial activity of stamen extracts showed no large differences between Gram-positive and Gram-negative bacteria in terms of minimal inhibitory concentration (MIC). In food matrix microbial analysis of the bacterial strains belonging to the main foodborne pathogen species, including Staphylococcus aureus DSM 20231, Escherichia coli DSM 30083, and Listeria monocytogenes DSM 20600, using low-fat UHT milk, revealed a statistically significant reduction in the number of cells (particularly for E. coli and S. aureus with a complete elimination of the population of the two target bacteria following incubation in diethyl ether extracts of saffron stamen (DES) at high concentrations tested, both at 37 °C and 6 °C (for 48 h and 7 days, respectively). A synergic effect was observed when the pathogens were incubated at 6 °C with DES. This work shows these by-products to be excellent sources of bioactive compounds, which could be exploited in high-added-value products, such as food, cosmetics, and drugs.


2021 ◽  
Vol 32 (4) ◽  
pp. 743-749
Author(s):  
Victoria Yulita Fitriani ◽  
Budi Suprapti ◽  
Muhammad Amin

Abstract Objectives This study aims to determine the characteristics of Lactobacillus acidophilus and Lactobacillus reuteri from fermented soursop fruit juice and cow’s milk, respectively as probiotic candidate based on exposure to pH, bile salts, pathogenic bacteria, and antibiotics. Methods In vitro studies were conducted to examine the resistance of Lactobacillus acidophilus and Lactobacillus reuteri in pH 2, 2.5, 3.2, and 7.2, resistance to bile salts, resistance to pathogenic bacteria (Escherichia coli, Staphylococcus aureus and Enterococcus faecalis) and antituberculosis antibiotics. Results Viability of Lactobacillus acidophilus and Lactobacillus reuteri isolates remained unchanged (6.3 × 107 CFU/mL and 5.03 × 107 CFU/mL) at various acidic pH, and had a low survival rate in Ox gall 0.3% (bile salts). These isolates also showed antibacterial properties against pathogens in the gastrointestinal tract. Both of these bacteria are quite safe to be used together with ofloxacin, linezolid, moxifloxacin, and levofloxacin, antibiotic for tuberculosis therapy. Conclusions The results showed that Lactobacillus acidophilus and Lactobacillus reuteri from fermented soursop fruit juice and cow’s milk respectively fulfilled the characteristics of probiotic and could potentially be used as adjunct therapy in tuberculosis drug-resistance.


2018 ◽  
Vol 2 (1) ◽  
pp. 01-04
Author(s):  
Mansour Binandeh

Initially, magnetic nanoparticles (MNP) Fe3O4 are synthesized by a chemical correlation method and its core / shell structure is detected using SEM, FT-IR analysis. The purpose of this production was to use the nanoparticle performance level in the absorption of antibiotics, namely, ampicillin (amp). Absorption sampling was analyzed by UV-Vis spectrophotometer and the results indicate that the absorbance of the ampere increases to 85%. The bond between these two is electrostatic bonding, which was confirmed by EDX analysis. Ultimately, this compound was used for the antibacterial process. In this case, the MNP-amp compound was added in a natural amount of 20 μl a bacterial culture pattern overnight (In-vitro). The results showed that 95% of the bacteria were killed (confirmation of antibacterial properties of MNP). Therefore, it can be transmitted intentionally by controlling the magnetic field into living cells for the destruction of pathogenic bacteria.


2020 ◽  
Vol 45 (2) ◽  
pp. 331-341
Author(s):  
F. T. Ajayi ◽  
S. O. Omotoso ◽  
O. J. Babayemi

Acetone and ethanol extracts of Albizia saman (ASL) and Tithonia diversifolia (TDL) leaves used as fodder for ruminant were evaluated for their antibacterial properties against selected pathogenic bacteria. Phytochemical screening was determined according to standard procedures, while antibacterial activity was by agar well diffusion and broth micro dilution methods. The levels of tannin (0.29 and 0.34 mg/100g); saponin (0.75 and 0.59 mg/100g); oxalates (0.17 and 0.14mg/100g); and phytate (0.11 and 0.12 mg/100g) in the fodder plants were below critical levels that may affect digestibility in ruminants. Acetone and ethanol extracts from ASL and TDL showed maximum zones of inhibition against Staphylococcus aureus (19.00 and 14.50 mm; 23.00 and 21.50 mm) and Pseudomonas aeruginosa (15.50 and 12.00 mm; 18.50 and 17.00 mm), respectively compared to Gentamycin (9.97 mm). Minimum inhibitory concentration (MIC) values of acetone and ethanol extracts from ASL ranged from 0.10 to 0.28 mg/mL and 0.13 to 0.22 mg/mL, while TDL extracts ranged from 0.20 to 0.32 mg/mL and 0.20 to 0.31 mg/mL, respectively for all the tested organisms. Minimum bactericidal concentration (MBC) values of ethanol extracts from both plant ranged from 0.5-0.80 mg/mL and 0.7-0.90 mg/mL compared to MBC values (0.02-0.04 mg/mL) of the reference antibiotic (gentamycin) for all the tested bacteria species. In conclusion, antibacterial properties exhibited by the plant extract implied that the bioactive compounds are potential antibacterial agents against pathogenic bacteria of ruminant or foodborne pathogens in vitro.


2021 ◽  
Vol 28 ◽  
Author(s):  
Fatemeh Forouzanfar ◽  
Hamideh Sadat Mohammadipour ◽  
Majid Akbari ◽  
Reza Beyraghshamshir ◽  
Abbas Tanhaeian ◽  
...  

Objective: Oral infections and dental caries are considered serious health problems. Therefore, searching for new agents with antimicrobial properties seems to be crucial. This study aimed to evaluate the antimicrobial activity of the recombinant Thrombocidin-1 [TC-1] peptide on some oral pathogens. Also, the cytotoxicity of this peptide on human gingival fibroblast cells was investigated. Methods & Materials: In this study, Pichia pastoris was used for the expression of recombinant TC-1. The microbroth dilution method was used to determine the minimum inhibitory concentration [MIC] and minimum bacterial concentration [MBC]. It tested against four main oral pathogens; Streptococcus mutans, Streptococcus salivarius, Streptococcus oralis, and Enterococcus faecalis. Moreover, the cytotoxicity analysis was done on gingival fibroblast cells by the MTT method. The data were analyzed using a two-way analysis of variance [ANOVA] and Tukey’s HSD tests. Results: The most bactericidal effect of TC-1 was against S. salivarius, the highest bacteriostatic effect was against S. salivarius, and S. oralis had the lowest MIC value of 1.512 μg/ml. The Thrombocidin-1 peptide showed lower antibacterial properties against E. faecalis compared with CHX, unlike the stronger antimicrobial effect on examined streptococci. According to cytotoxicity examination, no concentration of TC-1 presented over 50% growth inhibition [IC50] of the fibroblasts cells. Conclusion: Based on antimicrobial tests and cytotoxicity results, the Thrombocidin-1 peptide may be useful as a safe antibacterial agent against some oral pathogens in dental materials.


2020 ◽  
Vol 42 (5) ◽  
pp. 1799-1808
Author(s):  
Irene Laura Cibanal ◽  
◽  
Leticia Andrea Fernández ◽  
Giovanni Galietta Positano ◽  
Lucía Bóffano Chebataroff ◽  
...  

2016 ◽  
Vol 11 (1) ◽  
pp. 269 ◽  
Author(s):  
Vivek K. Bajpai ◽  
Siddhartha Singh ◽  
Archana Mehta

<p class="Abstract">Current research analyzes the chemical composition of <em>Ligustrum lucidum</em> flower essential oil obtained by the hydrodistillation, and examines its anti-microbial mode of action against food-borne pathogenic bacteria. Gas chromatography-mass spectrometry analysis of the oil resulted in the determination of 44 different compounds, representing 85.2% of the total oil. The oil (1 mg/disc) showed significant antibacterial effect as diameters of inhibition zones (14.6 ± 0.2 – 19.7 ± 0.3 mm), as well as minimum inhibitory and minimum bactericidal concentrations values (250–1000 and 250–2000 µg/mL), respectively. Based on the susceptibility, <em>L. lucidum</em> flower oil revealed its mode of action on membrane integrity as confirmed by increased release of extracellular ATP (2.5 and 2.2 pg/mL), leakage of potassium ions (950 and 900 mM/L), loss of 260-nm absorbing materials (4.2 and 3.9 optical density), and increase in relative electrical conductivity (10.6 and 9.8%) against <em>Staphylococcus aureus</em> KCTC-1621 (Gram-positive) and <em>Salmonella enterica</em> ATCC-4731 (Gram-negative), respectively.</p><p> </p>


2000 ◽  
Vol 66 (5) ◽  
pp. 1928-1932 ◽  
Author(s):  
X. Jia ◽  
A. Patrzykat ◽  
R. H. Devlin ◽  
P. A. Ackerman ◽  
G. K. Iwama ◽  
...  

ABSTRACT Fish losses from infectious diseases are a significant problem in aquaculture worldwide. Therefore, we investigated the ability of cationic antimicrobial peptides to protect against infection caused by the fish pathogen Vibrio anguillarum. To identify effective peptides for fish, the MICs of certain antimicrobial peptides against fish pathogens were determined in vitro. Two of the most effective antimicrobial peptides, CEME, a cecropin-melittin hybrid peptide, and pleurocidin amide, a C-terminally amidated form of the natural flounder peptide, were selected for in vivo studies. A single intraperitoneal injection of CEME did not affect mortality rates in juvenile coho salmon infected with V. anguillarum, the causative agent of vibriosis. Therefore, the peptides were delivered continuously using miniosmotic pumps placed in the peritoneal cavity. Twelve days after pump implantation, the fish received intraperitoneal injections ofV. anguillarum at a dose that would kill 50 to 90% of the population. Fish receiving 200 μg of CEME per day survived longer and had significantly lower accumulated mortalities (13%) than the control groups (50 to 58%). Fish receiving pleurocidin amide at 250 μg per day also survived longer and had significantly lower accumulated mortalities (5%) than the control groups (67 to 75%). This clearly shows the potential for antimicrobial peptides to protect fish against infections and indicates that the strategy of overexpressing the peptides in transgenic fish may provide a method of decreasing bacterial disease problems.


Sign in / Sign up

Export Citation Format

Share Document