scholarly journals Biological treatment provides disease-modifying immunological effects

Author(s):  
Mohamed Shamji ◽  
Elizabeth Palmer ◽  
Janice Layhadi ◽  
Theo Moraes ◽  
Thomas Eiwegger

Advances in molecular biology alongside the accelerated development of gene and cell engineering have contributed to the development of several endotype-targeted biological therapies against chronic immune-mediated allergic diseases. Conventional therapies for asthma, chronic rhinosinusitis with polyposis (CRSwNP), chronic spontaneous urticaria and atopic dermatitis (AD) are not without limitations, and as such the advent of biological therapies have provided a promising alternative treatment option. Biologicals have proven efficacious in the treatment of refractory chronic spontaneous urticaria, asthma, AD, CRSwNP and there is increasing evidence for their utility in treating food allergy. Biologicals are applied and investigated for the most urgent need: acute treatment, symptom control and reduction of steroid usage. Currently there are five approved biologicals for allergic disease management, targeted against IgE (omalizumab), type 2 (T2) cytokines and cytokine receptors (IL-4Ra; dupilumab, IL-5; mepolizumab/reslizumab, IL-5Ra; benralizumab).

2020 ◽  
Vol 17 (3) ◽  
pp. 115-120
Author(s):  
Elena S. Fedenko ◽  
Olga G. Elisyutina ◽  
Natalia I. Il`ina

The outbreak of the SARS-CoV-2-induced Coronavirus Disease 2019 (COVID-19) pandemic started in December 2019 in Wuhan, China, continued to spread across the globe and spanned 188 countries. Under the new circumstances treatment approach for T2 allergic diseases such as asthma, chronic hives, atopic dermatitis, and sinusitis with polyps has been changed. In the past years, new biological therapies monoclonal antibodies for these diseases have been developed targeting different aspects of the type 2 immune response. New knowledge on the COVID-19 disease course raises many issues around the safety of biologicals in patients with active infection, as well as their interactions with antiviral medications. In Russia new biological therapies entered clinical practice but its effectiveness and safety still are not known. This newsletter is based on Considerations on Biologicals for Patients with allergic disease in times of the COVID-19 pandemic: an EAACI Statement and the latest scientific data.


2020 ◽  
Vol 6 (1) ◽  
pp. 10 ◽  
Author(s):  
Riccardo Guidi ◽  
Christopher J. Wedeles ◽  
Mark S. Wilson

Immunological diseases, including asthma, autoimmunity and immunodeficiencies, affect a growing percentage of the population with significant unmet medical needs. As we slowly untangle and better appreciate these complex genetic and environment-influenced diseases, new therapeutically targetable pathways are emerging. Non-coding RNA species, which regulate epigenetic, transcriptional and translational responses are critical regulators of immune cell development, differentiation and effector function, and may represent one such new class of therapeutic targets. In this review we focus on type-2 immune responses, orchestrated by TH2 cell-derived cytokines, IL-4, IL-5 and IL-13, which stimulate a variety of immune and tissue responses- commonly referred to as type-2 immunity. Evolved to protect us from parasitic helminths, type-2 immune responses are observed in individuals with allergic diseases, including Asthma, atopic dermatitis and food allergy. A growing number of studies have identified the involvement of various RNA species, including microRNAs (miRNA) and long non-coding (lncRNA), in type-2 immune responses and in both clinical and pre-clinical disease settings. We highlight these recent findings, identify gaps in our understanding and provide a perspective on how our current understanding can be harnessed for novel treat opportunities to treat type-2 immune-mediated diseases.


2020 ◽  
pp. 100-107
Author(s):  
John D. Isaacs ◽  
Nishanthi Thalayasingam

Therapeutic monoclonal antibodies and related molecules are increasingly used to treat immune-mediated and inflammatory diseases. They interact very precisely with a soluble or cell-bound ligand to have three predominant effects: neutralization of proinflammatory cytokines or growth factors; modulation of intercellular interactions; or depletion of pathogenic cells. They deliver significantly enhanced specificity in comparison to traditional synthetic drugs and have delivered substantial improvements in clinical outcomes in many immune, inflammatory, and allergic diseases. However, there are no biomarkers to help decide which biological class to try first in a particular patient, hence one of the main challenges for the future is the identification of ‘stratifiers’ to guide therapy.


2015 ◽  
Vol 53 (12) ◽  
Author(s):  
K Karimi ◽  
K Neumann ◽  
J Meiners ◽  
R Voetlause ◽  
W Dammermann ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 152
Author(s):  
Carly M. Davis ◽  
Jaclyn G. McCutcheon ◽  
Jonathan J. Dennis

Pseudomonas aeruginosa is a pernicious bacterial pathogen that is difficult to treat because of high levels of antibiotic resistance. A promising alternative treatment option for such bacteria is the application of bacteriophages; the correct combination of phages plus antibiotics can produce synergistic inhibitory effects. In this study, we describe morphological changes induced by sub-MIC levels of the antibiotic aztreonam lysine (AzLys) on P. aeruginosa PA01, which may in part explain the observed phage–antibiotic synergy (PAS). One-step growth curves for phage E79 showed increased adsorption rates, decreased infection latency, accelerated time to lysis and a minor reduction in burst size. Phage E79 plus AzLys PAS was also able to significantly reduce P. aeruginosa biofilm growth over 3-fold as compared to phage treatment alone. Sub-inhibitory AzLys-induced filamentation of P. aeruginosa cells resulted in loss of twitching motility and a reduction in swimming motility, likely due to a reduction in the number of polar Type IV pili and flagella, respectively, on the filamented cell surfaces. Phage phiKZ, which uses Type IV pili as a receptor, did not exhibit increased activity with AzLys at lower sub-inhibitory levels, but still produced phage–antibiotic synergistic killing with sub-inhibitory AzLys. A one-step growth curve indicates that phiKZ in the presence of AzLys also exhibits a decreased infection latency and moderately undergoes accelerated time to lysis. In contrast to prior PAS studies demonstrating that phages undergo delayed time to lysis with cell filamentation, these PAS results show that phages undergo accelerated time to lysis, which therefore suggests that PAS is dependent upon multiple factors, including the type of phages and antibiotics used, and the bacterial host being tested.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Bruno Rafael Ramos de Mattos ◽  
Maellin Pereira Gracindo Garcia ◽  
Julia Bier Nogueira ◽  
Lisiery Negrini Paiatto ◽  
Cassia Galdino Albuquerque ◽  
...  

Inflammatory bowel diseases (IBD) are characterized by chronic inflammation of the intestinal tract associated with an imbalance of the intestinal microbiota. Crohn’s disease (CD) and ulcerative colitis (UC) are the most widely known types of IBD and have been the focus of attention due to their increasing incidence. Recent studies have pointed out genes associated with IBD susceptibility that, together with environment factors, may contribute to the outcome of the disease. In ulcerative colitis, there are several therapies available, depending on the stage of the disease. Aminosalicylates, corticosteroids, and cyclosporine are used to treat mild, moderate, and severe disease, respectively. In Crohn’s disease, drug choices are dependent on both location and behavior of the disease. Nowadays, advances in treatments for IBD have included biological therapies, based mainly on monoclonal antibodies or fusion proteins, such as anti-TNF drugs. Notwithstanding the high cost involved, these biological therapies show a high index of remission, enabling a significant reduction in cases of surgery and hospitalization. Furthermore, migration inhibitors and new cytokine blockers are also a promising alternative for treating patients with IBD. In this review, an analysis of literature data on biological treatments for IBD is approached, with the main focus on therapies based on emerging recombinant biomolecules.


Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 99
Author(s):  
Johann Sellner ◽  
Paulus S. Rommer

Several concerns have been raised about the use of immunodepleting agents including alemtuzumab, cladribine and CD20-depleting antibodies in people with multiple sclerosis (pwMS) during the coronavirus disease (COVID) 2019 pandemic. As the end of the pandemic is not yet in sight, vaccination against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) may be an elegant strategy to overcome the potential hazards associated with initiating and continuing treatment with immune-depleting agents. In this review, we summarize the immunological effects of immune-depleting therapy and underlying considerations for the hitherto existing recommendations that suggest a restricted use of immune-deleting therapies during the pandemic. Moreover, we critically discuss open questions regarding vaccination in general and against SARS-CoV-2 in pwMS.


2017 ◽  
Vol 117 (10) ◽  
pp. 1868-1874 ◽  
Author(s):  
Jo-Ann Sheppard ◽  
Theodore Warkentin ◽  
Andrew Shih

SummaryOne of the standard distinctions between type 1 (non-immune) and type 2 (immune-mediated) heparin-induced thrombocytopenia (HIT) is the transience of thrombocytopenia: type 1 HIT is viewed as early-onset and transient thrombocytopenia, with platelet count recovery despite continuing heparin administration. In contrast, type 2 HIT is viewed as later-onset (i. e., 5 days or later) thrombocytopenia in which it is generally believed that platelet count recovery will not occur unless heparin is discontinued. However, older reports of type 2 HIT sometimes did include the unexpected observation that platelet counts could recover despite continued heparin administration, although without information provided regarding changes in HIT antibody levels in association with platelet count recovery. In recent years, some reports of type 2 HIT have confirmed the observation that platelet count recovery can occur despite continuing heparin administration, with serological evidence of waning levels of HIT antibodies (“seroreversion”). We now report two additional patient cases of type 2 HIT with platelet count recovery despite ongoing therapeutic-dose (1 case) or prophylactic-dose (1 case) heparin administration, in which we demonstrate concomitant waning of HIT antibody levels. We further review the literature describing this phenomenon of HIT antibody seroreversion and platelet count recovery despite continuing heparin administration. Our observations add to the concept that HIT represents a remarkably transient immune response, including sometimes even when heparin is continued.


2021 ◽  
Author(s):  
Judit Font-Urgelles ◽  
Sonia Mínguez-Blasco ◽  
Basilio Rodríguez-Díez ◽  
Lídia Creus-Vila ◽  
Mireia Esquius-Rafat ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Simon Schreiber ◽  
Christoph M. Hammers ◽  
Achim J. Kaasch ◽  
Burkhart Schraven ◽  
Anne Dudeck ◽  
...  

The function of T cells is critically dependent on their ability to generate metabolic building blocks to fulfil energy demands for proliferation and consecutive differentiation into various T helper (Th) cells. Th cells then have to adapt their metabolism to specific microenvironments within different organs during physiological and pathological immune responses. In this context, Th2 cells mediate immunity to parasites and are involved in the pathogenesis of allergic diseases including asthma, while CD8+ T cells and Th1 cells mediate immunity to viruses and tumors. Importantly, recent studies have investigated the metabolism of Th2 cells in more detail, while others have studied the influence of Th2 cell-mediated type 2 immunity on the tumor microenvironment (TME) and on tumor progression. We here review recent findings on the metabolism of Th2 cells and discuss how Th2 cells contribute to antitumor immunity. Combining the evidence from both types of studies, we provide here for the first time a perspective on how the energy metabolism of Th2 cells and the TME interact. Finally, we elaborate how a more detailed understanding of the unique metabolic interdependency between Th2 cells and the TME could reveal novel avenues for the development of immunotherapies in treating cancer.


Sign in / Sign up

Export Citation Format

Share Document