scholarly journals Stability of soybean seed composition

Genetika ◽  
2011 ◽  
Vol 43 (2) ◽  
pp. 217-227 ◽  
Author(s):  
Svetlana Balesevic-Tubic ◽  
Vuk Djordjevic ◽  
Jegor Miladinovic ◽  
Vojin Djukic ◽  
Mladen Tatic

Stability of protein and oil content of 13 soybean varieties were examined using linear model across seven locations and during six years. Due to heterogeneity of environments all year/locations was distributed in to two groups, based on achieved yield. Stability of protein content differed in the low and high yielding environments, while average values show only minor differences. In contrast, oil content stability was slightly changed in the low and high yielding environments, while the average oil content were significantly higher in the low yielding environments. Environmental factors influenced the correlation between oil and protein content in soybeans. Negative correlation between protein and oil content was observed only in the high yielding environments, while varieties in low yielding environments lack this well known inverse relation.

Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1847
Author(s):  
Olena Sobko ◽  
Andreas Stahl ◽  
Volker Hahn ◽  
Sabine Zikeli ◽  
Wilhelm Claupein ◽  
...  

The cultivation area of soybean (Glycine max (L.) Merr) is increasing in Germany as a way to ensure self-sufficiency through its use as feed and food. However, climatic conditions needed for soybean cultivation are not appropriate in all parts of the country. The objective of this study was to determine the influence of solar radiation, temperature, and precipitation on soybean seed productivity and quality in central and south Germany. A multi-factorial field trial was carried out with three replicates at four locations in 2016 and five locations in 2017, testing 13 soybean varieties from the maturity groups MG 00 and MG 000. Considering all the tested factors, “variety” was highly significant concerning protein content (Ø 41.1% dry matter (DM)) and oil content (Ø 19.1% in DM), but not seed yield (Ø 40.5 dt ha−1).The broad sense heritability of protein content was H2 = 0.80 and of oil content H2 = 0.7. Protein and oil content were significantly negatively correlated (r = −0.82). Seed yield was significantly positively correlated with solar radiation (r = 0.32) and precipitation (r = 0.33), but significantly negatively with Crop Heat Units (CHU) (r = −0.42). Over both experimental years, varieties from maturity group MG 00 were less significantly correlated with the tested environmental factors than varieties from maturity group MG 000. None of the environmental factors tested significantly increased the protein or oil content of soybean. In growing areas with heat periods during ripening, protein content tended to be higher than in cooler areas; in areas with high solar radiation during flowering, protein content tended to be reduced.


OCL ◽  
2018 ◽  
Vol 25 (6) ◽  
pp. D603 ◽  
Author(s):  
Sophie Jasinski ◽  
Fabien Chardon ◽  
Nathalie Nesi ◽  
Alain Lécureuil ◽  
Philippe Guerche

Western Europe oleoproteaginous species like rapeseed mainly accumulate oil and protein in their seeds. To become competitive with soybean, seed protein quantity and quality should be improved in rapeseed. The negative correlation existing between seed protein and oil content apparently prevents the possibility to increase protein content without affecting oil content. Exploration of natural and induced genetic variability in the model plant Arabidopsis thaliana allows the identification of several genotypes impaired in this negative correlation. Different genetic approaches have been undertaken in order to isolate genetic factors responsible for the tight control of seed oil and protein homeostasis and this negative correlation. Once isolated in this model plant, such genetic determinants will be identified in important crops such as rapeseed or other oilseed crops in order to manipulate both components independently and thus produce on purposed seeds. In the long term, this research will help breed new varieties that could contribute to reduce Europe’s dependence on US soybean import.


2013 ◽  
Vol 34 (1) ◽  
pp. 113-127
Author(s):  
Jerzy Szyrmer

12 Soybean strains bred by the author were tested with respect to their adaptation to different environments in the period 1975-1977. Better environmental conditions in Przecław (Rzeszów region) than in Radzików near Warsaw have beneficial effect on seed yield and the lenght of vegetation period in tested soybeans. Generaly, tested strains yielded better than population variety 'Warszawska' used as a check. Highest yield was produced by strain M-17/76 - 22,7 q/ha. This strain is already registered as a variety 'Ajma'. Seed yield, fat and protein content are determined by genotype and environmental factors. The negative correlation was found between seed yield, its components and the length of vegetation period. It suggests that selection of early and, at the some time, high yielding varieties can and should be done.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2200
Author(s):  
Ahmed M. Abdelghany ◽  
Shengrui Zhang ◽  
Muhammad Azam ◽  
Abdulwahab S. Shaibu ◽  
Yue Feng ◽  
...  

In order to ensure an ongoing and long-term breeding progress of soybean, stable sources of major quality traits across multi-environments need to be identified. Here, a panel of 135 soybean genotypes was tested in three different Chinese environments, including Beijing, Anhui, and Hainan during the 2017 and 2018 growing seasons to identify stable genotypes for cultivation under varying environmental conditions. The weighted average of absolute scores biplot (WAASB) for the best linear unbiased predictions of the genotype-environment interaction and multi-trait stability index (MTSI) were utilized to determine the stability of the soybeans for seven seed composition traits viz; protein content, oil content, and five fatty acids (palmitic, stearic, oleic, linoleic, and linolenic acids). Based on the WAASB index, the following genotypes were identified as stable genotypes for some specific traits; ZDD12828 and ZDD12832 for protein content, WDD01583 and WDD03025 for oil content, ZDD23040 for palmitic acid, WDD00033 for stearic acid, ZDD23822 for oleic acid, ZDD11183 for linoleic acid, and ZDD08489 for linolenic acid. Furthermore, based on MTSI at a selection intensity of 10%, 14 soybean genotypes were selected for their average performance and stability. Overall, the MTSI was shown to be a powerful and simple tool for identifying superior genotypes in terms of both performance and stability, hence, identifying stable soybean genotypes for future breeding programs of quality traits.


Weed Science ◽  
1981 ◽  
Vol 29 (1) ◽  
pp. 123-127 ◽  
Author(s):  
W. R. Azlin ◽  
C. G. McWhorter

Over a 4-yr period, glyphosate [N-(phosphonomethyl)glycine] was applied over-the-top to soybeans [Glycine max(L.) Merr.] at five rates, from 0.56 to 3.36 kg/ha, at four periods of time prior to harvest, 23 to 29 days, 15 to 21 days, 7 to 12 days, and 1 to 4 days. Soybean yields were reduced when glyphosate was applied at 2.24 and 3.36 kg/ha 23 to 29 days before harvest. Soybean seed were discolored following all five rates of glyphosate applied 23 to 29 days before harvest, following glyphosate at 1.12 to 3.36 kg/ha applied 15 to 21 days before harvest, and following glyphosate at 3.36 kg/ha applied 7 to 12 days before harvest. Germination of soybean seed was reduced at 30 C only when glyphosate was applied at 2.24 and 3.36 kg/ha 23 to 29 days before harvest, or at 3.36 kg/ha applied 15 to 21 days before harvest. At alternating temperatures (10.6 C for 72 h followed by 30 C for 72 h), all treatments applied 23 to 29 days before harvest reduced soybean seed germination; glyphosate at 1.12, 1.68, and 3.36 kg/ha applied 15 to 21 days before harvest also reduced germination. Seed from plots treated with glyphosate 23 to 29 or 15 to 21 days before harvest produced atypical soybean plants. Glyphosate at 2.24 and 3.36 kg/ha applied 23 to 29 days before harvest reduced the oil content in soybean seed, but none of the treatments consistently affected the protein content.


2020 ◽  
Vol 7 (11) ◽  
pp. 1776-1786 ◽  
Author(s):  
Shoudong Wang ◽  
Shulin Liu ◽  
Jie Wang ◽  
Kengo Yokosho ◽  
Bin Zhou ◽  
...  

Abstract Soybean accounts for more than half of the global production of oilseed and more than a quarter of the protein used globally for human food and animal feed. Soybean domestication involved parallel increases in seed size and oil content, and a concomitant decrease in protein content. However, science has not yet discovered whether these effects were due to selective pressure on a single gene or multiple genes. Here, re-sequencing data from >800 genotypes revealed a strong selection during soybean domestication on GmSWEET10a. The selection of GmSWEET10a conferred simultaneous increases in soybean-seed size and oil content as well as a reduction in the protein content. The result was validated using both near-isogenic lines carrying substitution of haplotype chromosomal segments and transgenic soybeans. Moreover, GmSWEET10b was found to be functionally redundant with its homologue GmSWEET10a and to be undergoing selection in current breeding, leading the the elite allele GmSWEET10b, a potential target for present-day soybean breeding. Both GmSWEET10a and GmSWEET10b were shown to transport sucrose and hexose, contributing to sugar allocation from seed coat to embryo, which consequently determines oil and protein contents and seed size in soybean. We conclude that past selection of optimal GmSWEET10a alleles drove the initial domestication of multiple soybean-seed traits and that targeted selection of the elite allele GmSWEET10b may further improve the yield and seed quality of modern soybean cultivars.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhijuan Chen ◽  
Vanessa Lancon-Verdier ◽  
Christine Le Signor ◽  
Yi-Min She ◽  
Yun Kang ◽  
...  

AbstractGrain legumes are highly valuable plant species, as they produce seeds with high protein content. Increasing seed protein production and improving seed nutritional quality represent an agronomical challenge in order to promote plant protein consumption of a growing population. In this study, we used the genetic diversity, naturally present in Medicago truncatula, a model plant for legumes, to identify genes/loci regulating seed traits. Indeed, using sequencing data of 162 accessions from the Medicago HAPMAP collection, we performed genome-wide association study for 32 seed traits related to seed size and seed composition such as seed protein content/concentration, sulfur content/concentration. Using different GWAS and postGWAS methods, we identified 79 quantitative trait nucleotides (QTNs) as regulating seed size, 41 QTNs for seed composition related to nitrogen (i.e. storage protein) and sulfur (i.e. sulfur-containing amino acid) concentrations/contents. Furthermore, a strong positive correlation between seed size and protein content was revealed within the selected Medicago HAPMAP collection. In addition, several QTNs showed highly significant associations in different seed phenotypes for further functional validation studies, including one near an RNA-Binding Domain protein, which represents a valuable candidate as central regulator determining both seed size and composition. Finally, our findings in M. truncatula represent valuable resources to be exploitable in many legume crop species such as pea, common bean, and soybean due to its high synteny, which enable rapid transfer of these results into breeding programs and eventually help the improvement of legume grain production.


Medicina ◽  
2021 ◽  
Vol 57 (3) ◽  
pp. 275
Author(s):  
Natsuko Matsumoto ◽  
Jonguk Park ◽  
Rie Tomizawa ◽  
Hitoshi Kawashima ◽  
Koji Hosomi ◽  
...  

Background and Objectives: The gut microbiota is associated with human health and dietary nutrition. Various studies have been reported in this regard, but it is difficult to clearly analyze human gut microbiota as individual differences are significant. The causes of these individual differences in intestinal microflora are genetic and/or environmental. In this study, we focused on differences between identical twins in Japan to clarify the effects of nutrients consumed on the entire gut microbiome, while excluding genetic differences. Materials and Methods: We selected healthy Japanese monozygotic twins for the study and confirmed their zygosity by matching 15 short tandem repeat loci. Their fecal samples were subjected to 16S rRNA sequencing and bioinformatics analyses to identify and compare the fluctuations in intestinal bacteria. Results: We identified 12 genera sensitive to environmental factors, and found that Lactobacillus was relatively unaffected by environmental factors. Moreover, we identified protein, fat, and some nutrient intake that can affect 12 genera, which have been identified to be more sensitive to environmental factors. Among the 12 genera, Bacteroides had a positive correlation with retinol equivalent intake (rs = 0.38), Lachnospira had a significantly negative correlation with protein, sodium, iron, vitamin D, vitamin B6, and vitamin B12 intake (rs = −0.38, −0.41, −0.39, −0.63, −0.42, −0.49, respectively), Lachnospiraceae ND3007 group had a positive correlation with fat intake (rs = 0.39), and Lachnospiraceae UCG-008 group had a negative correlation with the saturated fatty acid intake (rs = −0.45). Conclusions: Our study is the first to focus on the relationship between human gut microbiota and nutrient intake using samples from Japanese twins to exclude the effects of genetic factors. These findings will broaden our understanding of the more intuitive relationship between nutrient intake and the gut microbiota and can be a useful basis for finding useful biomarkers that contribute to human health.


1992 ◽  
Vol 72 (3) ◽  
pp. 635-641 ◽  
Author(s):  
A. E. Van Deynze ◽  
P. B. E. McVetty ◽  
R. Scarth ◽  
S. R. Rimmer

To compare the effects of varying seeding rate on the agronomic performance, phenology and seed quality of hybrid and conventional summer rape cultivars, four hybrid and two conventional summer rape cultivars were seeded at 1.5, 3.0, 4.5, 6.0 and 9.0 kg ha−1 at two locations for 3 yr. The hybrid cultivars were, very importantly, 24% higher yielding and produced 50% more total dry matter than the conventional cultivars. The hybrid cultivars were, on average, 1.3% lower in seed oil content, 1.0% higher in seed protein content and equal in sum of oil and protein in the seed compared with the conventional cultivars. The hybrid cultivars were on average, 1.3 d later to 50% flowering and 1.1 d later to maturity than the average for the conventional cultivars, (i.e., equal or earlier to flowering and maturity than Regent). The hybrid cultivars were also 3.9% lower in harvest index and 1.3 ppm lower in chlorophyll content than the conventional cultivars. In spite of these differences, there were no significant cultivar-by-seeding-rate interactions, indicating that the hybrid and conventional cultivars responded similarly to varying seeding rate. Lodging, days to 50% flowering, days to maturity, harvest index, survival, oil content and protein content displayed significant linear responses to varying seeding rate. Stand at maturity, seed yield and total dry matter production displayed significant linear and quadratic responses to varying seeding rate. Varying seeding rate had no effect on seed formation period, the sum of oil and protein content, or chlorophyll content. A seeding rate of 6 kg ha−1 maximized seed yield for both hybrid and conventional summer rape cultivars.Key words: Brassica napus, canola, seed quality, agronomy, phenology


2017 ◽  
Vol 76 (7) ◽  
pp. 1852-1866 ◽  
Author(s):  
Qian Lu ◽  
Hui Liu ◽  
Wen Liu ◽  
Yuming Zhong ◽  
Caibing Ming ◽  
...  

Due to the low concentration of nitrate and high contents of organics, brewery effluent was not suitable for the cultivation of Spirulina sp. This work changed the nutrient profile of brewery effluent effectively by dilution, addition of nitrate, and anaerobic digestion. The result showed that the optimum dilution rate and NaNO3 addition for brewery effluent were 20% and 0.5 g/L, respectively. Spirulina sp. grown in pretreated brewery effluent produced 1.562 mg/L biomass and reduced concentrations of nutrients to reach the permissible dischargeable limits. In addition, Spirulina sp. grown in pretreated brewery effluent had much higher protein content and oil content. So the appropriate treatment converted brewery effluent into a nutrient balanced medium for algae cultivation and alleviated the potential environmental problems. Pretreatment procedure developed in this work is an effective way to realize the sustainable utilization of brewery effluent and produce algal biomass with valuable nutrients.


Sign in / Sign up

Export Citation Format

Share Document