scholarly journals Relation between Modulus of Elasticity and Compressive Strength of Ultrahigh-Strength Mortar with Mixed Silicon-Caebide as Fine Aggregate

1999 ◽  
Vol 63 (8) ◽  
pp. 1083-1084
Author(s):  
Hajime Suto

Copper slag is a rough blasting grit or a by-product acquired by the process of copper smelting and refining. These copper slags are recycled for copper recovery. In this paper, we analysed copper slag’s feasibility and evaluate its total competence in M25 grade concrete. In this observation, a concrete mixture is applied with copper slag as a fine aggregate ranging from 0%, 20%, 40%, 60%, 80%, and 100% respectively. The strength of copper slag’s implementation is accomplished on the basis of concrete’s flexural strength, compressive strength and splitting tensile strength. From the obtained results, in concrete 40% percentage of copper slag is used as sand replacement. On 28 days, the modulus of elasticity increased up to 32%, the compressive strength increased up to 34% and flexural strength is increased to 6.2%. From this experiment, it is proved technically that replacing sand using copper slag as a fine mixture in M25 grade concrete.


2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Wayan Mustika ◽  
I M. Alit K. Salain ◽  
I K. Sudarsana

Nickel slag is one kind of nickel ore smelting waste after the combustion process. Production of nickel slag PT. Antam Pomalaa Kolaka Southeast Sulawesi province during the period 2011-2012 period approximately 1 million tons of slag / year, with a nickel content in ore processing of nickel is between 1.80% to 2.00%. Visually, the physical form of this nickel slag aggregate resembles. Research on the use of nickel slag as an aggregate in concrete mixture is carried out using a cylindrical specimen with a diameter of 15 cm and 30 cm high by 48 pieces were tested at 28 days with some variations in the mix. Variation 01, 100% natural aggregate, variation 02, nickel slag as coarse aggregate, variation 03, nickel slag as fine aggregate, and variation 04, nickel slag as coarse aggregate and fine aggregate. Aggregate gradation in the mixture is set and is designed so that it meets the specifications gradation mix for maximum aggregate size of 40 mm. The composition of the concrete mixture used is a mixture of concrete with the ratio of cement : fine aggegate : coarse aggregate is 1: 2: 3 in a weight ratio with cement water ratio (fas) is set at 0.5. The results showed that when compared with the use of natural agregate, terak nickel is used only as a coarse agregate, a fine agregate only and combined agregate coarse and fine agregates resulting slump values ??fell 39.47%, an increase of 55.26%, and an increase of 34.21%. As a coarse agregate, terak nickel increases the compressive strength, modulus of elasticity and splitting tensile strenght, respectively for 42.27%, 19.37% and 23.46%. As fine agregate, nickel terak resulting value of compressive strength, modulus of elasticity and tensile strength divided down respectively by 16.75%, 6.70% and 24.58%. As a combination of coarse and fine agregate, terak nickel increases the compressive strength, modulus of elasticity and splitting tensile strenght, respectively for 10.31%, 9.26% and 6.70%.  


Author(s):  
Dr. Sheela V ◽  
Vijay. S ◽  
Vikram. M ◽  
Baskaran. K ◽  
Vishnu. K

This research was conducted to investigate the performance of fresh and hardened concrete containing discarded foundry sands as a replacement of fine aggregate. A control concrete mix was proportioned to achieve a 28-day compressive strength of 37 MPa . Other concrete mixes were proportioned to replace 15% and 35% of regular concrete sand with cleaned foundry sand and used foundry sand by weight. Concrete performance was evaluated with respect to compressive strength, tensile strength and modulus of elasticity. At 28-day age, concrete containing used foundry sand showed about 20 to 30% lower values than concrete without used foundry sand. But concrete containing 25% and 35% cleaned foundry sand gave almost the same compressive strength as that of the control mix.


2021 ◽  
Vol 895 ◽  
pp. 110-120
Author(s):  
Marwah Jaafar Kashkool ◽  
Wisam Abdulilah Almadi ◽  
Qusay A. Jabal ◽  
Layth Abdul Rasool Al Asadi ◽  
Jaber Kadhim Alghurabi

The study aims to improve some mechanical properties like compressive strength, tensile strength, modulus of elasticity and flexural strength of polymer modified concrete (PMC). This improving for PMC done by using waste iron filling as replacement from fine aggregate. waste iron filings and chips used in this research as percentages from sand ranged from 0 % to 40 % , the compressive strength of ordinary polymer concrete increase from 32.2 MPa to 41.81 MPa by 40% replacement of sand with waste iron filings and chips, tensile strength increased also from 2.83 MPa to 4.23 MPa by 40% replacement also. Flexural strength increased from 3.7 MPa for reference mix to about 7.1 MPa for mixes with 40% replacement, modulus of elasticity increased from 21087 MPa to 25233 MPa by using maximum percentage of waste iron filings. There is a slight increment in mechanical properties of polymer modified concrete after 30% ratio of waste iron filings and chips. Also research includes mixes modified with larger dosage of super plasticizer and less water/cement ratio to improve mechanical properties of PMC.


2019 ◽  
Vol 11 (9) ◽  
pp. 2704 ◽  
Author(s):  
How-Ji Chen ◽  
Neng-Hao Shih ◽  
Chung-Hao Wu ◽  
Shu-Ken Lin

This study presents the experimental results of fresh and hardened properties of concrete incorporating high-volume fly ash (HVFA). Two kinds of low-calcium fly ash with loss on ignition (LOI) of 5% and 8% were used as replacement for cement and/or fine aggregate of 0% (control), 20%, 40%, 50%, 60% and 80% by weight of the total cementitious materials. The properties of fresh concrete tested included the slump, air content, unit weight and setting time; those of hardened concrete determined included compressive strength, modulus of elasticity, flexural strength and drying shrinkage. Test results indicate that the concretes made with high-LOI (8%) fly ash can be successfully produced for structural concrete, which contains fly ash of up to 60% of the total cementitious materials. The high-LOI fly ash-concretes with higher replacement levels presented longer setting times. However, although both the fresh and hardened properties of high LOI fly ash concretes were inferior to those of the low-LOI (5%) fly ash concretes, the high modulus of elasticity, the adequate strength development characteristics both at early and later ages (up to 365 days) and the low dry shrinkage were observed when compared to those of the control concrete with a comparable 28-day compressive strength of 30 MPa.


2021 ◽  
Vol 3 (1) ◽  
pp. 65-72
Author(s):  
Danindra Pramudya Wardana ◽  
Gilang Fadhlurrahman Evriantama ◽  
Muhtarom Riyadi

Concrete is a material commonly used for structural work. However, concrete has one disadvantage, namely that its specific gravity is high enough so that the dead load on a structure becomes large. One way to deal with high concrete density is to use Styrofoam waste as a substitute for some of the fine aggregate. This research was conducted to examine the physical and mechanical properties as well as the optimum value of compressive strength, split tensile strength and modulus of elasticity of concrete with a 0.4 fas using Styrofoam as a partial substitute for fine aggregate. The research method used is an experimental method by making the test object in the form of a concrete cylinder with a diameter of 15 cm and a height of 30 cm. The composition of the concrete mixture used is a volume ratio of 1 Pc: 2 Ps: 2 Kr with a fas 0.4. The styrofoam variations used are 10%, 20%, and 30% of the ratio to the volume of fine aggregate in normal concrete mixtures. Testing of the mechanical properties of concrete was carried out at the age of 7, 14, 21, and 28 days for the concrete compressive strength test, and 28 days for the split tensile strength of the concrete, and the modulus of elasticity. The results showed that the compressive strength of the concrete increased with the age of the concrete and the addition of the styrofoam variations with the exception of the 10% variation. For the split tensile strength test, there was an increase in line with the increase in the styrofoam variation, while the modulus of elasticity decreased at 10% variation against 0% variation and increased at 20% and 30% variation with 0% variation.


2021 ◽  
Vol 11 (7) ◽  
pp. 354
Author(s):  
Waleed Ahmed ◽  
Essam Zaneldin ◽  
Amged Al Hassan

With the rapid growth in the manufacturing industry and increased urbanization, higher amounts of composite material waste are being produced, causing severe threats to the environment. These environmental concerns, coupled with the fact that undergraduate students typically have minimal experience in research, have initiated the need at the UAE University to promote research among undergraduate students, leading to the development of a summer undergraduate research program. In this study, a recycling methodology is presented to test lab-fabricated Carbon-Fiber-Reinforced Polymer (CFRP) for potential applications in industrial composite waste. The work was conducted by two groups of undergraduate students at the UAE University. The methodology involved the chemical dissolution of the composite waste, followed by compression molding and adequate heat treatment for rapid curing of CFRP. Subsequently, the CFRP samples were divided into three groups based on their geometrical distinctions. The mechanical properties (i.e., modulus of elasticity and compressive strength) were determined through material testing, and the results were then compared with steel for prompt reference. The results revealed that the values of mechanical properties range from 2 to 4.3 GPa for the modulus of elasticity and from 203.7 to 301.5 MPa for the compressive strength. These values are considered competitive and optimal, and as such, carbon fiber waste can be used as an alternate material for various structural applications. The inconsistencies in the values are due to discrepancies in the procedure as a result of the lack of specialized equipment for handling CFRP waste material. The study concluded that the properties of CFRP composite prepreg scrap tend to be reusable instead of disposable. Despite the meager experimental discrepancies, test values and mechanical properties indicate that CFRP composite can be successfully used as a material for nonstructural applications.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1898
Author(s):  
Marek Urbański

A new type of HFRP hybrid bars (hybrid fiber reinforced polymer) was introduced to increase the rigidity of FRP reinforcement, which was a basic drawback of the FRP bars used so far. Compared to the BFRP (basalt fiber reinforced polymer) bars, modification has been introduced in HFRP bars consisting of swapping basalt fibers with carbon fibers. One of the most important mechanical properties of FRP bars is compressive strength, which determines the scope of reinforcement in compressed reinforced concrete elements (e.g., column). The compression properties of FRP bars are currently ignored in the standards (ACI, CSA). The article presents compression properties for HFRP bars based on the developed compression test method. Thirty HFRP bars were tested for comparison with previously tested BFRP bars. All bars had a nominal diameter of 8 mm and their nonanchored (free) length varied from 50 to 220 mm. Test results showed that the ultimate compressive strength of nonbuckled HFRP bars as a result of axial compression is about 46% of the ultimate strength. In addition, the modulus of elasticity under compression does not change significantly compared to the modulus of elasticity under tension. A linear correlation of buckling load strength was proposed depending on the free length of HFRP bars.


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 104
Author(s):  
Fernando A. N. Silva ◽  
João M. P. Q. Delgado ◽  
António C. Azevedo ◽  
Tahlaiti Mahfoud ◽  
Abdelhafid Khelidj ◽  
...  

Early deterioration of reinforced concrete foundations has been often reported in recent years. This process is usually characterized by an extensive mapping cracking process on concrete surfaces that results from several types of Internal Swelling Reaction (ISR). In this paper, a real case study of a tall reinforced concrete building with a severe deterioration process installed in its deep foundations is discussed. Laboratory tests were performed in concrete drilled cores extracted from a deep pile cap block 19 years after the beginning of construction. Tests to assess the compressive strength, the static and the dynamic modulus of elasticity, the gas permeability, and electron microscopy scanning to find out the primary mechanism responsible for the deterioration observed during in situ inspections. Chemical alterations of materials were observed in concrete cores, mainly due to Delayed Ettringite Formation (DEF), which significantly affected the integrity and durability of the structure. Dynamic modulus of elasticity showed to be a better indicator of damage induced by ISR in concrete than compressive strength. Procedures to strengthen the deteriorated elements using prestressing proved to be an efficient strategy to recover the structural integrity of pile caps deteriorated due to expansions due to ISR.


2020 ◽  
Vol 846 ◽  
pp. 207-212
Author(s):  
Ming Gin Lee ◽  
Yung Chih Wang ◽  
Wan Xuan Xiao ◽  
Ming Ju Lee ◽  
Tuz Yuan Huang

This study was conducted to assess the effect of CO2 curing on the compressive strength of high strength pervious concrete. The factors studied to evaluate compressive strength of concrete on CO2 curing pressure, curing time, and age of specimen at testing. Three Aggregate sizes, three CO2 curing pressures, three CO2 curing time, and three testing ages were used in this investigation. The research tried to produce a high strength pervious concrete and use carbon dioxide for curing to find out whether it could enhance the compressive strength. The results show that the compressive strength of the control group increases rapidly and its 90-day compressive strength closed to 60 MPa. The 1-day compressive strength has a major impact after CO2 curing and their strength decreased by about 0% to 50% as compared to the control group. However, it is observed that there is only slight difference in relationship between modulus of elasticity and compressive strength obtained from 100 by 200mm cylinders with CO2 curing.


Sign in / Sign up

Export Citation Format

Share Document