scholarly journals Bovine Embryonic Mortality with Special Reference to Mineral Deficiency, Heat Stress and Endocrine Factors: A Review

2021 ◽  
Vol 12 (1) ◽  
pp. 047-058
Author(s):  
Umesh B. Kumbhar ◽  
◽  
Bhushan Kumar Charpe ◽  
Sarbjeet Kumar ◽  
◽  
...  

Embryonic Mortality is the major cause of reproductive and economic loss in cattle and Buffaloes. Embryonic Mortality is more common during the early than the late embryonic period, i.e., from day 8th to 16th at the hatching of blastocysts and initiation of elongation and commencement of implantation without affecting cycle lengths. Early embryonic mortality is a major source of embryonic and economic loss with mortality rate up to 40%. Embryonic mortality is also reported due to mineral deficiency and heat stress in cattle and buffaloes. Physical modifications of animal environment, nutritional management with Antioxidant, trace minerals and genetic development of breeds that are less sensitive to heat stress should be best solution. Embryonic death occurs at the time of maternal recognition of pregnancy, probably related to a failure of the Interferon tau (IFNι) secretory mechanism along with progesterone deficiency and luteal insufficiency. Recent research, both in terms of physiological mechanisms and pharmacological treatments has mostly focused on the period of maternal recognition of pregnancy or the anti-luteolytic effect. hCG/ GnRH /Progesterone supplementation have shown positive results. Supplementation of interferon as anti-luteolytic agent and supplementing Omega-3 has shown encouraging results. Ovarian examination, Animal history, blood/milk progesterone levels, PAG test and ultrasound appear to be the only practical tool presently available for diagnosis of embryonic mortality. This present review article is covering all the aspects of embryonic mortality with special reference totrace minerals, heat stress, hormonal impact and interferon tau.

2018 ◽  
Author(s):  
◽  
Joao Gabriel Nascimento Moraes

Infertility and subfertility represent pervasive problems in domestic animals and humans, and embryonic mortality is a major factor influencing reproductive efficiency. In cattle, the majority of embryonic loss occurs during the first month of gestation that involves the period of blastocyst formation, conceptus elongation, maternal recognition of pregnancy, implantation and beginning of placentation. Pregnancy success and embryonic mortality are affected by paternal, maternal, embryonic, and environmental factors, and the establishment and maintenance of pregnancy are a result of complex conceptus-endometrium interactions that results in adequate conceptuses (embryo/fetus and associated extraembryonic membranes) development, implantation and placentation. Our central hypothesis is that the uterus directly influences embryonic and conceptus development, and we proposed that heifers with consistently high or low fertility have distinct uterine capacity to support pregnancy. To test this hypothesis, serial embryo transfer (3-4 rounds) was used to classify heifers based on pregnancy success on day 28 as high fertile (HF; 100%), subfertile (SF; 25%), or infertile (IF; 0%). Next, a series of experiments were conducted using the fertility-classified heifers to investigate conceptus development and uterine biology in two time points: (1) day 14, to investigate conceptus development prior to the period when pregnancy induce changes are detected in the endometrium transcriptome; (2) at day 17, to evaluate conceptus-endometrial cross talk during the period of maternal recognition of pregnancy. Results from the studies conducted on day 14 supports the idea that: (1) circulating progesterone concentrations are not different among fertility-classified heifers; (2) conceptus development and survival by day 14 is not affected by fertility classification; (3) only minimal differences in endometrium transcriptome are detected among pregnant fertility-classified heifers. Collectively, these results indicated that the biological mechanisms underlying subfertility and infertility manifests between days 14 and 28, when pregnancy recognition signaling and conceptus elongation and implantation must occur for the establishment of pregnancy. Moreover, results from the subsequent experiments conducted at day 17 indicated that: (1) the mechanism of pregnancy loss in fertility-classified heifers start to manifest around the time of maternal recognition of pregnancy; (2) conceptus survival by day 17 is compromised in IF heifers; (3) conceptus development is advanced in HF than SF heifers; (4) conceptus transcriptome is directly influenced by the uterine environment; (5) dysregulated conceptus-endometrial interactions in SF heifers seems to be the major cause of pregnancy loss. Analysis of the uterine luminal fluid (ULF) from fertility classified heifers on day 17 established that: (1) ULF composition is affected by conceptus-endometrium interactions; (2) glucose concentrations in ULF are not different among fertility-classified heifers; (3) pregnancy induced changes in the metabolites found in ULF was diminished in SF heifers, and the majority of the metabolites that increased in the ULF of pregnant HF than SF heifers were associated with energy and amino acid metabolism; (4) increased abundance of proteins involved with energy metabolism, oxidative stress, amino acid metabolism, and cell proliferation and differentiation were detected in ULF of pregnant HF than SF heifers; (5) The lipid content of the ULF is altered by pregnancy and fertility classification; (6) overall concentrations prostaglandins and interferon tau were increased in the uterine lumen of pregnant HF than SF heifers, likely due to differences in conceptus size. Collectively, results from these studies supports the idea that the dysregulated conceptus-endometrium interactions in SF heifers affects the uterine luminal contents and impairs conceptus survival and elongation. Furthermore, knowledge gained from these studies enhances our understanding of the mechanisms regulating pregnancy loss in cattle and provides new information on uterine and conceptus biology during early pregnancy in ruminants.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 168-168
Author(s):  
Melissa S Roths ◽  
Megan A Abeyta ◽  
Tori Rudolph ◽  
Brittany Wilson ◽  
Matthew B Hudson ◽  
...  

Abstract Heat stress (HS) occurs when internal body temperatures are elevated above a thermoneutral zone in response to extreme environmental temperatures. In the U.S. dairy industry, HS results in economic loss due to decreased feed intake, milk quality, and milk yield. Previous work has demonstrated increased plasma urea nitrogen in heat stressed dairy cattle which is thought to originate from increased skeletal muscle proteolysis, however this has not been empirically established. The objective of this investigation was to determine the extent to which HS promotes proteolysis in skeletal muscle of dairy cattle. We hypothesized HS would increase activation of the calpain and proteasome systems in skeletal muscle. To test this hypothesis, following a 3-d acclimation period in individual box stalls, all lactating dairy cows were held under thermoneutral (TN) conditions for 4-d for collection of baseline measures and then exposed to TN or HS conditions for 7-d followed by a biopsy of semitendinosus (n=8/group). To induce HS, cattle were fitted with electric heating blankets, which they wore for the duration of the heating period. This approach increased rectal temperature 1.1°C (P< 0.05), respiratory rate by 33 bpm (P< 0.05), plasma urea nitrogen by 19% (P=0.08) and milk urea nitrogen by 26% (P< 0.05), and decreased dry matter intake by 32% (P< 0.05) and milk production by 26% (P< 0.05) confirming HS. Contrary to our expectations, we discovered that calpain I and II abundance and activation, and calpain activity were similar between groups. Likewise, protein expression of E3 ligases, MafBx and Murf1, were similar between groups as was total ubiquitinated proteins and proteasome activity. Collectively, and counter to our hypothesis, these results suggest skeletal muscle proteolysis is not increased following 7-d of HS. These data question the presumed dogma that increased blood urea nitrogen is due to elevated proteolysis in skeletal muscle.


1978 ◽  
Vol 18 (94) ◽  
pp. 698 ◽  
Author(s):  
AM Paterson ◽  
I Barker ◽  
DR Lindsay

The records of five years' production in an 800 sow commercial piggery were examined and the relationships between summer temperatures, returns to service and litter size were considered. When mean daily maximum temperature exceeded 32�C during the week of service there was an increase in the number of sows failing to hold to service. The number of sows that returned to service 15-25 days after mating remained constant throughout the year, and summer infertility was characterized by an increase in the number of sows that exhibited extended, irregular return-to-service intervals. The litter size of sows that conceived during the period of summer infertility was not significantly different from that of sows conceiving at other times of the year. The data suggest that summer infertility is not due simply to fertilization failure, embryonic mortality or an increased incidence of abortions in sows mated during periods of high temperature. Neither does boar fertility appear to be in question. It seems most likely that heat stress around the time of mating may affect ovarian function, resulting in temporary infertility and an endocrine imbalance, which causes delayed, irregular returns to oestrus.


1973 ◽  
Vol 16 (3) ◽  
pp. 251-259 ◽  
Author(s):  
W. V. S. Wijeratne

SUMMARYApparent mortality among 280 215 embryos from the 4th to 16th week of gestation was studied from returns to service records following first inseminations with fresh semen from 100 bulls of five dairy and three beef breeds of cattle over a period of 8 years.The average incidence of apparent mortality was 20·3% for embryos conceived by fresh semen first inseminations. Differences in rates of apparent embryonic mortality between breeds of sire and also between sires within the Guernsey, Ayrshire and Dairy Shorthorn were statistically significant although confounded with the breed of dam. The highest incidence was from matings by bulls of the Channel Island breeds. These results suggest that hereditary factors influenced embryonic mortality in cattle.The rate of apparent mortality was higher among embryos conceived by frozen semen than by fresh semen. Ageing of fresh semen extra-corporeally also increased the rate of apparent embryonic mortality but to a lesser extent than frozen semen.The rate of apparent embryonic mortality increased with the greater number of inseminations required for conception possibly because of a deteriorating maternal environment.


2021 ◽  
Author(s):  
SeungMin Oh ◽  
Abdolreza Hosseindoust ◽  
SangHun Ha ◽  
Joseph Moturi ◽  
JunYoung Mun ◽  
...  

Abstract Background: Heat stress is an important issue in swine farms, which causes economic loss and compromises sows health. The addition of fiber to the diet is an option in modifying intestinal health. This study was designed to evaluate the effect of fiber level on reproductive performance, intestinal microbiota and integrity, and metabolism of gestating sows, and its carry-over effect on the lactation period during heat stress. Methods: A total of 36 gestating sows (90 day-pregnant) were allotted to three treatments with 12 replicates. The diets included 3% (LF), 4.5% (MF), and 6% (HF) crude fiber. All gestating sows fed 2.5 kg of diet daily and diets contained 3150 kcal/kg of ME, 14% crude protein (CP), and 0.58% standardized ileal digestibility of lysine. Results: Sows fed the HF diet showed a lower respiratory rate and hair cortisol concentration compared with the LF treatment. The HF diet increased the feed intake of sows compared with the LF diet, while it decreased the farrowing duration. The HF diet increased the constipation index compared with the MF and LF diets. Sows in the HF treatment showed a greater piglet weight and litter weight compared with the LF treatment at weaning. Sows in the LF treatment showed the highest digestibility of CP and the greatest digestibility of acid detergent fiber was observed in sows fed HF diet. The HF diet increased lying and decreased standing, and sham chewing behavior compared with the LF diet. The concentration of acetate and total short-chain fatty acid were increased in sows fed the HF diet. The gene expression of glucose transporter 3 and 4 was increased in the HF treatment. The gene expression of heat shock protein70 was decreased in the HF treatment.Conclusion: Increasing dietary fiber level decreased stress level and improved farrowing duration and reproductive performance.


Author(s):  
Ajay Singh ◽  
Mahesh Kumar ◽  
Susheel Raina ◽  
Milind Ratnaparkhe ◽  
Jagadish Rane ◽  
...  

FAD3 play important roles in modulating membrane fluidity in response to various abiotic stresses. However, a comprehensive analysis of FAD3 in drought, salinity and heat stress tolerance is lacking in soybean. The present study assessed the functional role of fatty acid desaturase 3 to abiotic stress responses in soybean. We used Bean Pod Mottle Virus -based vector to alter expression of Glycine max omega-3 fatty acid desaturase . Higher levels of recombinant BPMV-GmFAD3 transcripts were detected in overexpressing soybean plants. Overexpression of GmFAD3 in soybean resulted in increased levels of jasmonic acid and higher expression of GmWRKY54 as compared to mock-inoculated, vector-infected and FAD3-silenced soybean plants under drought and salinity stress conditions. FAD3 overexpressing plants showed higher levels of chlorophyll content, leaf SPAD value, relative water content, chlorophyll fluorescence, transpiration rate, carbon assimilation rate, proline content and also cooler canopy under drought and salinity stress conditions as compared to mock-inoculated, vector-infected and FAD3-silenced soybean plants. Results from current study revealed that GmFAD3 overexpressing soybean plants exhibited drought and salinity stress tolerance although tolerance to heat stress was reduced. On the other hand, soybean plants silenced for GmFAD3 exhibited tolerance to heat stress, but were vulnerable to drought and salinity stress


Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1266 ◽  
Author(s):  
Sanjeev Wasti ◽  
Nirvay Sah ◽  
Birendra Mishra

Heat stress is one of the major environmental stressors in the poultry industry resulting in substantial economic loss. Heat stress causes several physiological changes, such as oxidative stress, acid-base imbalance, and suppressed immunocompetence, which leads to increased mortality and reduced feed efficiency, body weight, feed intake, and egg production, and also affects meat and egg quality. Several strategies, with a variable degree of effectiveness, have been implemented to attenuate heat stress in poultry. Nutritional strategies, such as restricting the feed, wet or dual feeding, adding fat in diets, supplementing vitamins, minerals, osmolytes, and phytochemicals, have been widely studied and found to reduce the deleterious effects of heat stress. Furthermore, the use of naked neck (Na) and frizzle (F) genes in certain breed lines have also gained massive attention in recent times. However, only a few of these strategies have been widely used in the poultry industry. Therefore, developing heat-tolerant breed lines along with proper management and nutritional approach needs to be considered for solving this problem. Thus, this review highlights the scientific evidence regarding the effects of heat stress on poultry health and performances, and potential mitigation strategies against heat stress in broiler chickens and laying hens.


Sign in / Sign up

Export Citation Format

Share Document