BACTERIOLOGICAL CONTAMINATION OF THE INTERNAL SURFACES OF THE STORAGE AND TRANSPORTATION OF DAIRY RAW MATERIALS

Author(s):  
S.A. Anokhin ◽  

The paper considers the issues of increasing the bacteriological purity of the inner surfaces of the storage and transportation containers of milk raw materials in the framework of production by small agricultural livestock enterprises and farms. The results of an experimental study in the field of surface contamination from metallic and polymeric materials. Prospects for the use of polymeric materials with antibacterial properties.

2020 ◽  
Vol 10 (1) ◽  
pp. 49
Author(s):  
Suharto Suharto ◽  
Muhammad Amin ◽  
Muhammad Al Muttaqii ◽  
Syafriadi Syafriadi ◽  
Kiki Nurwanti

Experimental study on the use of basalt stone originated from Lampung has been conducted to evaluate its potential for a partial substitute of raw material in production of cement clinker. The basalt stone contains minerals of anorthite, augite, and albite phases that are required for clinker formation. In this study, the main raw materials were 80% limestone, 10% silica sand, 9% clay and 1% iron sand. The raw material in these experiments were mixtures 90% or 80% of the main raw material and 10% or 20% of basalt stone. The effect of adding coal to raw materials was also studied to see the possibility of an increase in clinkerization temperature inside the raw material mixture, and at the same time to see the effect of coal ash on clinker composition. Clinker obtained from heating of raw materials at a temperature of 1100oC had LSF of 94.1% and 95.1% (heating time of 1 and 3 hours). If heating is carried out at 1200oC, the clinker had LSF of 97.7% and 98.0% (heating time of 2 and 3 hours, respectively). Depending on the temperature and duration of heating, the clinker mostly had SM in the range of 2.18-2.40% , and AM in the range of 0,78-1.80%. Characterization using XRD showed that the clinker consisted of larnite and gehlenite phases, and dominated by CaO.Batu basalt Lampung telah diuji potensinya sebagai pengganti sebagian bahan baku utama pembuatan klinker semen. Batu basalt tersebut memiliki mineral-mineral dalam fase anorthite, augite, dan albite yang diperlukan pada pembentukan klinker. Pada penelitian ini, bahan baku utama adalah batu kapur 80%, pasir silika 10%, tanah liat 9% dan pasir besi 1%. Campuran bahan baku klinker adalah 90% atau 80% bahan baku utama dan 10% atau 20% batu basalt. Efek penambahan batubara ke dalam bahan baku klinker juga dipelajari untuk melihat kemungkinan kenaikan temperatur klinkerisasi di dalam campuran bahan baku, dan sekaligus untuk melihat efek abu batubara terhadap komposisi klinker. Klinker hasil pemanasan bahan baku pada temperatur 1100oC memiliki LSF 94,1% dan 95,1% (lama pemanasan 1 dan 3 jam). Jika pemanasan dilakukan pada 1200oC, klinker memilik LSF 97,7% dan 98,00% (lama pemanasan 2 dan 3 jam). Tergantung pada temperatur dan lama pemanasan, klinker hasil percobaan ini umumnya memiliki SM 2,18-2,40%, dan AM antara 0,78-1,80%. Karakterisasi dengan XRD menunjukkan bahwa klinker terdiri dari fase larnite dan gehlenite, dan didominasi CaO.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Youjing Li ◽  
Fen Li ◽  
Ying Yang ◽  
Baocai Ge ◽  
Fanzhu Meng

Abstract In view of the serious environmental pollution, which is the greatest problem the world is facing, and the continuous consumption of raw materials, it is imminent to search for green and sustainable resources. Lignin is an organic polymer that exists widely in nature, and if it can be transformed from traditional low-value waste product with low range of applications to functional materials with high application prospects, it can be of great significance to alleviate environmental pollution and shortage of fossil resources. One of the functional applications of lignin involves its use to fabricate composite with other polymeric materials, which can then be used to prepare membrane materials. This review summarizes the recent research and application progress of combining lignin with polypropylene, polyvinyl alcohol, starch, cellulose, chitosan, and other polymeric materials to prepare composite membranes; and summarizes the future development direction of lignin-based composite membranes. We hope this review may provide a new perspective to the understanding of lignin-based composite membranes and a useful reference for future research.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1865
Author(s):  
Rida Tajau ◽  
Rosiah Rohani ◽  
Mohd Sofian Alias ◽  
Nurul Huda Mudri ◽  
Khairul Azhar Abdul Halim ◽  
...  

In countries that are rich with oil palm, the use of palm oil to produce bio-based acrylates and polyol can be the most eminent raw materials used for developing new and advanced natural polymeric materials involving radiation technique, like coating resins, nanoparticles, scaffold, nanocomposites, and lithography for different branches of the industry. The presence of hydrocarbon chains, carbon double bonds, and ester bonds in palm oil allows it to open up the possibility of fine-tuning its unique structures in the development of novel materials. Cross-linking, reversible addition-fragmentation chain transfer (RAFT), polymerization, grafting, and degradation are among the radiation mechanisms triggered by gamma, electron beam, ultraviolet, or laser irradiation sources. These radiation techniques are widely used in the development of polymeric materials because they are considered as the most versatile, inexpensive, easy, and effective methods. Therefore, this review summarized and emphasized on several recent studies that have reported on emerging radiation processing technologies for the production of radiation curable palm oil-based polymeric materials with a promising future in certain industries and biomedical applications. This review also discusses the rich potential of biopolymeric materials for advanced technology applications.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3497
Author(s):  
Piotr Stachak ◽  
Izabela Łukaszewska ◽  
Edyta Hebda ◽  
Krzysztof Pielichowski

Polyurethanes (PUs) are a significant group of polymeric materials that, due to their outstanding mechanical, chemical, and physical properties, are used in a wide range of applications. Conventionally, PUs are obtained in polyaddition reactions between diisocyanates and polyols. Due to the toxicity of isocyanate raw materials and their synthesis method utilizing phosgene, new cleaner synthetic routes for polyurethanes without using isocyanates have attracted increasing attention in recent years. Among different attempts to replace the conventional process, polyaddition of cyclic carbonates (CCs) and polyfunctional amines seems to be the most promising way to obtain non-isocyanate polyurethanes (NIPUs) or, more precisely, polyhydroxyurethanes (PHUs), while primary and secondary –OH groups are being formed alongside urethane linkages. Such an approach eliminates hazardous chemical compounds from the synthesis and leads to the fabrication of polymeric materials with unique and tunable properties. The main advantages include better chemical, mechanical, and thermal resistance, and the process itself is invulnerable to moisture, which is an essential technological feature. NIPUs can be modified via copolymerization or used as matrices to fabricate polymer composites with different additives, similar to their conventional counterparts. Hence, non-isocyanate polyurethanes are a new class of environmentally friendly polymeric materials. Many papers on the matter above have been published, including both original research and extensive reviews. However, they do not provide collected information on NIPU composites fabrication and processing. Hence, this review describes the latest progress in non-isocyanate polyurethane synthesis, modification, and finally processing. While focusing primarily on the carbonate/amine route, methods of obtaining NIPU are described, and their properties are presented. Ways of incorporating various compounds into NIPU matrices are characterized by the role of PHU materials in copolymeric materials or as an additive. Finally, diverse processing methods of non-isocyanate polyurethanes are presented, including electrospinning or 3D printing.


2013 ◽  
Vol 641-642 ◽  
pp. 574-577 ◽  
Author(s):  
Ying Tao Li ◽  
Ling Zhou ◽  
Mao Jiang ◽  
Yu Zhang ◽  
Jun Shao

In this paper, the mechanical property experiments of concrete based on the seawater and sea sand have been carried in different raw materials preparation and different conservation environments. The results show that the early strength and late strength of concrete based on seawater and sea sand are better than concrete based on freshwater and sand. There is no significant strength decreased for concrete based on seawater and sea sand under accelerated alternating wet and dry conditions. For concrete based on seawater and sea sand mixed with admixture, the downward trend of late strength is significantly delayed, the late strength of concrete based on the seawater and sea sand mixed with slag gets the most obvious growth trend, while the late strength of seawater and sea sand concrete mixed with fly ash gets the largest increment.


2012 ◽  
Vol 67 (10) ◽  
pp. 961-975 ◽  
Author(s):  
Markus Hölscher ◽  
Christoph Gürtler ◽  
Wilhelm Keim ◽  
Thomas E. Müller ◽  
Martina Peters ◽  
...  

With the growing perception of industrialized societies that fossil raw materials are limited resources, academic chemical research and chemical industry have started to introduce novel catalytic technologies which aim at the development of economically competitive processes relying much more strongly on the use of alternative carbon feedstocks. Great interest is given world-wide to carbon dioxide (CO2) as it is part of the global carbon cycle, nontoxic, easily available in sufficient quantities anywhere in the industrialized world, and can be managed technically with ease, and at low cost. In principle carbon dioxide can be used to generate a large variety of synthetic products ranging from bulk chemicals like methanol and formic acid, through polymeric materials, to fine chemicals like aromatic acids useful in the pharmaceutical industry. Owing to the high thermodynamic stability of CO2, the energy constraints of chemical reactions have to be carefully analyzed to select promising processes. Furthermore, the high kinetic barriers for incorporation of CO2 into C-H or C-C bond forming reactions require that any novel transformation of CO2 must inevitably be associated with a novel catalytic technology. This short review comprises a selection of the most recent academic and industrial research developments mainly with regard to innovations in CO2 chemistry in the field of homogeneous catalysis and processes.


2019 ◽  
Vol 20 (2) ◽  
pp. 292-308
Author(s):  
V. Chernov ◽  
Е. Golomisyuk ◽  
Р. Evseev

The features of the expert study of traces from the effects of foreign objects on the inner surfaces of the cylinder mechanisms are considered. With the trasological examination of locks, most experts after examining the external and internal surfaces of the cylinder mechanisms of locks, unlocked by various types of keys, falsified or selected keys, ambiguously understand the mechanism of their trace formation, which can sometimes lead to a false conclusion. The purpose of the work is to present the results of the investigation of the mechanism of trace formation and localization of signs of exposure of foreign objects (lock pick, selected or fake keys) on the internal surfaces of the cylinder mechanisms of locks and recommendations to forensic experts in drawing conclusions during the course of the Trasological research. The mechanism of trace formation is considered, the characteristic and classification of traces of exposure to foreign objects are provided (lock pick, selected or fake keys). Groups of lock pick are identified, which are most often found in the Commission of criminal offenses, for their further research. A number of experimental studies have been carried out to study and analyze the mechanism of trace formation, as well as to localize the signs of influence of certain groups of lock pick on the internal surfaces of the cylinder mechanisms of the lock. The progress of the experimental studies has been described in stages. The results of the research on the opening of the cylinder mechanisms of locks are presented with various types of lock pick, depending on their design features. The illustrations explain the conditions for the location of traces on the relevant parts of the cylinder mechanisms of locks from the influence of the respective groups of lock pick. The results of an experimental study are summarized and conclusions are made on the possible conditions for the mechanism of trace formation. Recommendations to judicial experts on the formulation of conclusions in the course of trasological studies of cylinder locking mechanisms are proposed.


Author(s):  
Rodica Sturza

The presented results reflect the researches carried out over the last decade, having as their object the soil, water, vegetal raw materials, and wines from the Republic of Moldova. The analysis of the possible anthropogenic contamination (NAA method) demonstrated the absence of systematic soil pollution. A total of 30 elements were determined in soil samples and the soil-leaves-fruit transfer factors were calculated. Approximately 3000 samples of local wines have been analysed to determine the residual quantities of pesticides. POPs were not found in any of the wine samples. In most of the examined cases (> 60% of samples), the lack of organic pesticide residues was observed. The migration of phthalates into different solutions from polymeric materials (PVC, rubber) and the influence of the temperature on the extraction rate were investigated. It has been shown that the contamination with phthalate residues occurs predominantly at the stage of grape processing, technological treatment, and storage.


2011 ◽  
Vol 175-176 ◽  
pp. 598-601 ◽  
Author(s):  
Peng Zhang ◽  
Hong Lin ◽  
Yu Yue Chen

Bamboo pulp fibers, made of fast grown bamboo, were the recycled and environment-friendly natural raw materials in the textile industry which particularly today was paid more attention to its good performance due to energy and environment crisis. Hyper branched polymer was attracted more study because of the vast potential application in the future. In this study, the fabrics were modified with the amino-terminated hyper branched polymer (HBP-NH2) by dipping method and anti-UV and anti-bacterial properties of the treated bamboo pulp fabric were investigated. The results showed that the treated bamboo fabric had good antibacterial properties, the bacteria reduction of S.aureus and E.coli were as high as 89% or more, and also remained at around 88% after 20 times washing. The UPF values were increased from 8.16 to 18.18 which improved the anti-UV property of bamboo fabric.


2014 ◽  
Vol 644-650 ◽  
pp. 5451-5454
Author(s):  
Xu Bai ◽  
Shu Ming Wen ◽  
Shao Jun Bai ◽  
Chao Lv ◽  
Peng Xiang Zhang

In the blast furnace production process, the high iron content in the sludge produced by collecting, Iron can be used as recycled raw materials. Experimental study found that the use of magnetic roasting - weak magnetic iron powder method of recovering technology is feasible. The optimum conditions are: the grinding fineness is 87%, calcination temperature is 750 °C, roasting time is 25min, magnetic current is 1.5A under conditions to obtain a grade of 59% recovery rate of 79.3% iron ore .


Sign in / Sign up

Export Citation Format

Share Document