scholarly journals Antifungal Activity of Morinda citrifolia leaf extracts against Colletotrichum acutatum

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Oktira Roka Aji ◽  
Larasati Haliimah Roosyidah

Anthracnose is a plant disease that can infect a variety of plants worldwide. Fungal pathogen groups are the cause of anthracnose, one of which is Colletotrichum acutatum. Morinda citrifolia is famous for having antimicrobial activity. This study aims to determine the antifungal activity of M. citrifolia leaves extract against the growth of the fungus C. acutatum. The extract solvent used was 96% ethanol. The experiment consisted of five treatments (0%, 20%, 40%, 60% and propineb 0.1% as positive control). The method used in this study was the poisoned food technique. In this technique, C. acutatum was grown on PDA media mixed with M. citrifolia leaves extract. Antifungal activity was observed based on reduced mycelium growth compared to control. Observations were made every day by measuring the diameter of the fungus mycelium for eleven days. The analysis showed that 60% M. citrifolia leaves extract effectively inhibited the growth of the mycelium C. acutatum on the eleventh day of observation.

2020 ◽  
Vol 4 (1) ◽  
pp. 20-26
Author(s):  
Oktira Roka Aji ◽  
Yuni Rohmawati

Fusarium oxysporum is an important disease that causes wilt disease in plants. Fungal pathogen control using synthetic fungicides can cause negative impacts on the environment. Morinda citrifolia is one of the herbs that is known for many benefits. M. citrifolia leaf contains anthraquinone which have potential as antifungal agents. In this study, in vitro anti-fungal assay was conducted against F. oxysporum to analyze the antifungal activity of ethanol extract of M. citrifolia leaves. In vitro evaluation was carried out using poisoned food technique at four different concentrations i.e., 20%, 40%, 60% and 80%. The results showed concentration 60% gave the highest inhibitory effect (21,82%) on F. oxysporum mycelium growth.


2011 ◽  
Vol 57 (No. 5) ◽  
pp. 222-227 ◽  
Author(s):  
S. Sreeranjini ◽  
E.A. Siril

Morinda citrifolia Linn. (family Rubiaceae) is a small tree occurring in tropical areas of the world. The plant contains several medicinally active components that exhibit the therapeutic effects such as antibacterial, antiviral and anticancer activities. Anti-genotoxic effects of aqueous extracts prepared using dried leaves of M. citrifolia was studied. Allium cepa root tip meristem cells treated with 7% hydrogen peroxide were used for eliciting anti-genotoxicity. For this purpose experiments were performed with A. cepa onion bulbs treated for 24 h with different concentrations (15 or 30 g/L) of aqueous extract with or without pre-treatment (1 h) with 7% hydrogen peroxide. A significant reduction in mitotic index was recorded in treatment groups over negative control. Chromosomal aberrations such as breaks, bridges, stickiness and polar deviations were observed in positive control and treatment groups. The highest (21.48) percentage of chromosomal aberrations was noticed in positive control. A significant reduction in chromosomal aberrations (9.39) was recorded in root tips treated with hydrogen peroxide followed by 15 g/L extract. H<sub>2</sub>O<sub>2</sub> induced chromosomal aberrations were reduced due to leaf extract treatment indicates anti-mutagenic potential of the M. citrifolia. The observations suggest that M. citrifolia aqueous leaf extracts have anti-mitotic and anti-genotoxic effects; consequently oxidative stress induced aberrations due to H<sub>2</sub>O<sub>2</sub> are efficiently restored in the extract treated A. cepa root meristem cells.


1998 ◽  
Vol 88 (5) ◽  
pp. 396-401 ◽  
Author(s):  
A. Fawe ◽  
M. Abou-Zaid ◽  
J. G. Menzies ◽  
R. R. Bélanger

The controversial role of silicon in plant disease resistance, described mostly as a passive mechanical protection, has been addressed. Conclusive evidence is presented that silicon is involved in the increased resistance of cucumber to powdery mildew by enhancing the antifungal activity of infected leaves. This antifungal activity was attributable to the presence of low-molecular-weight metabolites. One of these metabolites, described here as a phytoalexin, was identified as a flavonol aglycone rhamnetin (3,5,3′,4′-tetrahydroxy-7-O-methoxyflavone). This is the first report of a phytoalexin for this chemical group in the plant kingdom and of a flavonol phytoalexin in cucumber, a chemical defense long believed to be nonexistent in the family Cucurbitaceae. The antifungal activity of leaf extracts was better expressed after acid hydrolysis, extending to another plant species the concept that some phytoalexins are synthesized as glycosylated phytoalexins or their precursors.


2017 ◽  
Vol 9 (2) ◽  
pp. 71
Author(s):  
Nurhasanah Nurhasanah ◽  
Fauzia Andrini ◽  
Yulis Hamidy

Shallot (Allium ascalonicum L.) has been known as traditional medicine. Shallot which has same genus with garlic(Allium sativum L.) contains allicin that is also found in garlic and has been suspected has fungicidal activity toCandida albicans. It is supported by several researches. Therefore, shallot is suspected has antifungal activity too.The aim of this research was to know antifungal activity of shallot’s water extortion againsts Candida albicans invitro. This was a laboratory experimental research which used completely randomized design, with diffusion method.Shallot’s water extortion was devided into three concentrations, there were 50%, 100% and 200%. Ketoconazole 2%was positive control and aquadest was negative control. The result of this research based on analysis of varians(Anova), there was significant difference between several treatments and was confirmed with Duncan New MultipleRange Test (DNMRT) p<0,05, there was significant difference between 100% shallot’s water extortion with othertreatments, but there was no significant difference between 50% shallot’s water extortion with 200% shallot’s. Theconclusion was shallot’s water extortion had antifungal activity againsts Candida albicans with the best concentration100%, but it was lower than ketoconazole 2%.


Author(s):  
Shubhaisi Das ◽  
Sunanda Burman ◽  
Goutam Chandra

Background: The only remedy for up surging problem of antibiotic resistance is the discovery of antibacterial agents of natural origin. Objective: The present study was aimed at finding antibacterial potential of crude and solvent extracts of mature leaves of Plumeria pudica. Methods: Antibacterial activity of three different solvent extracts were evaluated in four human and four fish pathogenic bacteria by measuring the zone of inhibition and determining Minimum Inhibitory Concentration and Minimum Bactericidal Concentration values. Standard antibiotics were used as positive control. Preliminary phytochemical screening of most effective extract i.e., ethyl acetate extract, Fourier Transform Infra Red analysis and GC-MS analysis of the Thin Layer Chromatographic (TLC) fraction of ethyl acetate extract were done meticulously. All experiments were done thrice and analyzed statistically. Results: Crude leaf extracts and solvent extracts caused good inhibition of bacterial growth in all selected bacteria. Ethyl acetate extract showed highest inhibition zones in all tested strains with maximum inhibition (19.50±0.29 mm) in Escherichia coli (MTCC 739). MBC/MIC of the extracts indicated that all three solvent extracts were bactericidal. Preliminary phytochemical tests revealed the presence of tannins, steroids and alkaloids and FT-IR analysis revealed presence of many functional groups namely alcoholic, amide, amine salt and aldehyde groups. From the GC-MS analysis of TLC fraction of ethyl acetate extract five different bioactive compounds e.g., 2,4-ditert –butylphenyl 5-hydroxypentanoate, Oxalic acid; allyl nonyl ester, 7,9-Ditert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione, Dibutyl phthalate and 2,3,5,8-tetramethyl-decane were identified. Conclusion: Leaf extracts of P. pudica contain bioactive compounds that can be used as broad spectrum bactericidal agent.


2017 ◽  
Vol 8 ◽  
Author(s):  
Julien Chaillot ◽  
Faiza Tebbji ◽  
Carlos García ◽  
Hugo Wurtele ◽  
René Pelletier ◽  
...  

2021 ◽  
Vol 9 (4) ◽  
pp. 839
Author(s):  
Muhammad Rafiullah Khan ◽  
Vanee Chonhenchob ◽  
Chongxing Huang ◽  
Panitee Suwanamornlert

Microorganisms causing anthracnose diseases have a medium to a high level of resistance to the existing fungicides. This study aimed to investigate neem plant extract (propyl disulfide, PD) as an alternative to the current fungicides against mango’s anthracnose. Microorganisms were isolated from decayed mango and identified as Colletotrichum gloeosporioides and Colletotrichum acutatum. Next, a pathogenicity test was conducted and after fulfilling Koch’s postulates, fungi were reisolated from these symptomatic fruits and we thus obtained pure cultures. Then, different concentrations of PD were used against these fungi in vapor and agar diffusion assays. Ethanol and distilled water were served as control treatments. PD significantly (p ≤ 0.05) inhibited more of the mycelial growth of these fungi than both controls. The antifungal activity of PD increased with increasing concentrations. The vapor diffusion assay was more effective in inhibiting the mycelial growth of these fungi than the agar diffusion assay. A good fit (R2, 0.950) of the experimental data in the Gompertz growth model and a significant difference in the model parameters, i.e., lag phase (λ), stationary phase (A) and mycelial growth rate, further showed the antifungal efficacy of PD. Therefore, PD could be the best antimicrobial compound against a wide range of microorganisms.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 373
Author(s):  
Siti Fairuz Yusoff ◽  
Farah Farhanah Haron ◽  
Norhayu Asib ◽  
Mahmud Tengku Muda Mohamed ◽  
Siti Izera Ismail

Postharvest fruits including tomatoes are commonly infected by gray mold disease resulting in significant economic losses in the fruit industry. Therefore, this study aimed to develop botanical fungicide derived from Vernonia amygdalina leaf extract to control gray mold on tomato. The emulsion formulation containing surfactant, oil carrier and water was optimized at different non-ionic alkyl polyglucoside surfactants through eleven combinations of oil to surfactant ratio (0:10, 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1 and 10:0 w/w). From eight selected formulations, two formulations, F5 and F7 showed stable in storage, remarkable thermodynamic stability, smaller particle size (66.44 and 139.63 nm), highly stable in zeta potential (−32.70 and −31.70 mV), low in polydispersity index (0.41 and 0.40 PdI), low in viscosity (4.20 and 4.37 cP) and low in surface tension (27.62 and 26.41 mN/m) as compared to other formulations. In situ antifungal activity on tomato fruits showed F5 formulation had a fungicidal activity against B. cinerea with zero disease incidence and severity, whereas F7 formulation reduced 62.5% disease incidence compared to a positive control with scale 1. Based on these findings, F5 formulation exhibited pronounced antifungal activity and may contribute to the development of new and safe antifungal product against gray mold on tomato.


2021 ◽  
pp. 1-16
Author(s):  
Erika-Alejandra Salinas-Peña ◽  
Martha Mendoza-Rodríguez ◽  
Claudia Velázquez-González ◽  
Carlo Eduardo Medina-Solis ◽  
América Patricia Pontigo-Loyola ◽  
...  

BACKGROUND: The Mexican serviceberry, Malacomeles denticulata, have been used as a successful oral therapy by Mexican communities without enough scientific support. OBJECTIVE: To evaluate the M. denticulata extracts with selective antibacterial properties over dental biofilm bacteria. METHODS: Fruit, Leaf, and Stem of M. denticulata extracts were evaluated with micro-broth dilution method using ATCC bacteria. OD600 values had compared against each positive control (T-student-test). Anaerobically viability had confirmed by Colony-Forming-Units. Thin-Layer-Chromatography was used to identify the number of compounds and phytochemicals to identify secondary metabolites of the selected extracts. RESULTS: Streptococcus mutans showed Minimum-Bactericidal-Concentrations_(MBC) at 30 mg/mL to Fruit, Leaf, and Stem extracts. Periodontal-pathogens Aggregatibacter actinomycetemcomitans serotype b_(MBC = 30 mg/mL_p <  0.01); Fusobacterium nucleatum subsp. nucleatum_(MBC = 30 mg/mL_p<0.001); Parvimonas micra_(MBC = 15 mg/mL_NS); Porphyromonas gingivalis_(MBC = 30 mg/mL_NS); and Prevotella intermedia_(MBC = 3.75 mg/mL_NS) presented higher sensitivity to Leaf-Methanol, than the primary colonizers. Phytochemicals showed positive results to anthraquinones, coumarins, flavonoids, saponins, saponins steroids/triterpenoids, steroids/triterpenes, and tannins/phenols. CONCLUSION: We suggest the natural extracts of fruit and leaf of the Mexican serviceberry for the preventive use over the oral cariogenic or periodontal biofilm species, by their selective antibacterial properties against pathogenic species evaluated in-vitro, and due to the presence of antibacterial secondary metabolites identified as flavonoids and saponins of M. denticulata leaf extracts.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3256
Author(s):  
Luis C. Chitiva-Chitiva ◽  
Cristóbal Ladino-Vargas ◽  
Luis E. Cuca-Suárez ◽  
Juliet A. Prieto-Rodríguez ◽  
Oscar J. Patiño-Ladino

In this study, the antifungal potential of chemical constituents from Piper pesaresanum and some synthesized derivatives was determined against three phytopathogenic fungi associated with the cocoa crop. The methodology included the phytochemical study on the aerial part of P. pesaresanum, the synthesis of some derivatives and the evaluation of the antifungal activity against the fungi Moniliophthora roreri, Fusarium solani and Phytophthora sp. The chemical study allowed the isolation of three benzoic acid derivatives (1–3), one dihydrochalcone (4) and a mixture of sterols (5–7). Seven derivatives (8–14) were synthesized from the main constituents, of which compounds 9, 10, 12 and 14 are reported for the first time. Benzoic acid derivatives showed strong antifungal activity against M. roreri, of which 11 (3.0 ± 0.8 µM) was the most active compound with an IC50 lower compared with positive control Mancozeb® (4.9 ± 0.4 µM). Dihydrochalcones and acid derivatives were active against F. solani and Phytophthora sp., of which 3 (32.5 ± 3.3 µM) and 4 (26.7 ± 5.3 µM) were the most active compounds, respectively. The preliminary structure–activity relationship allowed us to establish that prenylated chains and the carboxyl group are important in the antifungal activity of benzoic acid derivatives. Likewise, a positive influence of the carbonyl group on the antifungal activity for dihydrochalcones was deduced.


Sign in / Sign up

Export Citation Format

Share Document