scholarly journals Application Concept of the Active Magnetic Suspension Technology in the Aircraft Engine

2018 ◽  
Vol 41 (1) ◽  
pp. 161-193 ◽  
Author(s):  
Paulina Kurnyta-Mazurek ◽  
Artur Kurnyta ◽  
Agnieszka Pręgowska ◽  
Krzysztof Kaźmierczak ◽  
Leszek Frąś

Abstract The paper presents the results of work on control and monitoring systems of an active magnetic bearings for the aircraft engine. Mathematic model of the active homopolar electromechanical actuator with permanent magnets is expanded. Mathematical model of the test object is developed what allows to propose a control algorithm. The experimental verification of this theory was performed on the laboratory test stand. Moreover, special monitoring system is also designed. Presented comprehensive approach allows increasing reliability of the aircraft engines, as well as in wind turbines, electric drives and machine tools spindles.

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4365
Author(s):  
Fei Yang ◽  
Yong Zhao ◽  
Xingke Mu ◽  
Wenqiao Zhang ◽  
Lingtong Jiang ◽  
...  

The modular magnetic suspension platform depends on multi degree of freedom of Lorentz force actuators for large bearing capacity, high precision positioning and structure miniaturization. To achieve the integration of vertical driving force and horizontal driving force, a novel 2- (two degrees-of-freedom) DOF Lorentz force actuator is developed by designing the pose of the windings and permanent magnets (PMs). The structure and the working principle are introduced. The electromagnetic force mathematical model is established by the equivalent magnetic circuit method to analyze the coupling of magnetic flux. The distribution characteristics of magnetic flux density are analyzed by the finite-element method (FEM). It is found that the coupling of the magnetic flux and the large magnetic field gradient severely reduce the uniformity of the air-gap magnetic field. The electromagnetic force characteristic is investigated by FEM and measurement experiments. The difference between FEM and experiment results is within 10%. The reasons of driving force fluctuation are explained based on the distribution of air-gap magnetic field. The actuator performance are compared under the sliding mode control algorithm and PID control algorithm and the positioning accuracy is 20 μm and 15 μm respectively. Compared with the similar configuration, the motion range and force coefficient of the Lorentz force actuator in this paper are larger. It has a certain guiding significance on the structure design of the multi degree of freed Lorentz force actuator.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 977-983
Author(s):  
Koichi Oka ◽  
Kentaro Yamamoto ◽  
Akinori Harada

This paper proposes a new type of noncontact magnetic suspension system using two permanent magnets driven by rotary actuators. The paper aims to explain the proposed concept, configuration of the suspension system, and basic analyses for feasibility by FEM analyses. Two bar-shaped permanent magnets are installed as they are driven by rotary actuators independently. Attractive forces of two magnets act on the iron ball which is located under the magnets. Control of the angles of two magnets can suspend the iron ball stably without mechanical contact and changes the position of the ball. FEM analyses have been carried out for the arrangement of two permanent magnets and forces are simulated for noncontact suspension. Hence, successfully the required enough force against the gravity of the iron ball can be generated and controlled. Control of the horizontal force is also confirmed by the rotation of the permanent magnets.


1986 ◽  
Vol 64 (11) ◽  
pp. 2624-2633 ◽  
Author(s):  
Peter F. Major ◽  
Lawrence M. Dill ◽  
David M. Eaves

Three-dimensional interactions between grouped aerial predators (frontal discs of aircraft engines), either linearly arrayed or clustered, and flocks of small birds were studied using interactive computer simulation techniques. Each predator modelled was orders of magnitude larger than an individual prey, but the prey flock was larger than each predator. Expected numbers of individual prey captured from flocks were determined for various predator speeds and trajectories, flock–predator initial distances and angles, and flock sizes, shapes, densities, trajectories, and speeds. Generally, larger predators and clustered predators caught more prey. The simulation techniques employed in this study may also prove useful in studies of predator–prey interactions between schools or swarms of small aquatic prey species and their much larger vertebrate predators, such as mysticete cetaceans.The study also provides a method to study problems associated with turbine aircraft engine damage caused by the ingestion of small flocking birds, as well as net sampling of organisms in open aquatic environments.


2009 ◽  
Vol 147-149 ◽  
pp. 290-295 ◽  
Author(s):  
Bogdan Broel-Plater ◽  
Stefan Domek ◽  
Arkadiusz Parus

The paper deals with semi-active chatter absorber based on an electrodynamic transducer built around high-energy permanent magnets. Also, a fuzzy logic control system for the absorber control system has been designed. The principal advantage of fuzzy control is the possibility to implement practical experience gained by machine operators in the control algorithm. Hence, the possibility of factoring such quantities, as vibrations experienced by selected points of the machine-tool, and sound emitted by working machine into the analyzed chatter absorber fuzzy control system has been studied in the paper. The control system has been tested by way of simulation with the use of the process and cutting force models.


Author(s):  
Kenro Obuchi ◽  
Fumiaki Watanabe ◽  
Hiroshi Kuroki ◽  
Hiroyuki Yagi ◽  
Kazuyoshi Arai

Ceramic matrix composites (CMCs) have lower density and a higher service temperature limit than nickel based alloys which have been used for turbine components of aircraft engines. These properties of CMCs have the potential to reduce the weight of turbine components and improve turbine thermal efficiency with a higher turbine inlet temperature (TIT). One of the technical issues of the CMC turbine vane is a relatively lower impact resistance than nickel based alloy turbine vanes. There are various previous works about impact resistance of CMCs, but there is little work that assumed actual engine conditions. The objective of this work was to verify the resistance of SiC/SiC CMC turbine vane to the impact phenomena that occur in the actual aircraft engine. The field damage survey was conducted on actual metal turbine vanes of commercial engines overhauled in IHI. The survey made it clear that the typical damage was less-than-0.127-mm-dent at the leading edge. In addition, the dropped weight impact test using the actual turbine airfoil which is made from a nickel based alloy was conducted at ambient temperature. The amount of energy required to make the dent of a certain size that was observed in actual metal turbine vanes was estimated. Then, the dropped weight impact test using the CMC test piece with a leading edge shape was conducted at the impact energy estimated by the metal turbine airfoil. The results showed that the failure mode of the CMC test piece was local damage with dents of a certain size and not a catastrophic failure mode. From this work, the damage to be assumed on CMC vane in actual aircraft engines was identified. As a future task, the effect of the damage to the fatigue capability of CMC turbine vanes needs to be investigated.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Wenqing Zhang ◽  
Jie Li ◽  
Kun Zhang ◽  
Peng Cui

Hybrid suspension system with permanent magnet and electromagnet consumes little power consumption and can realize larger suspension gap. But realizing stable suspension of hybrid magnet is a tricky problem in the suspension control sphere. Considering from this point, we take magnetic flux signal as a state variable and put this signal back to suspension control system. So we can get the hybrid suspension mathematical model based on magnetic flux signal feedback. By application of MIMO feedback linearization theory, we can further realize linearization of the hybrid suspension system. And then proportion, integral, differentiation, magnetic flux density B (PIDB) controller is designed. Some hybrid suspension experiments have been done on CMS04 magnetic suspension bogie of National University of Defense Technology (NUDT) in China. The experiments denote that the new hybrid suspension control algorithm based on magnetic flux signal feedback designed in this paper has more advantages than traditional position-current double cascade control algorithm. Obviously, the robustness and stability of hybrid suspension system have been enhanced.


Author(s):  
Shubo Yang ◽  
Xi Wang

Limit protection, which frequently exists as an auxiliary part in control systems, is not the primary motive of control but is a necessary guarantee of safety. As in the case of aircraft engine control, the main objective is to provide the desired thrust based on the position of the throttle; nevertheless, limit protection is indispensable to keep the engine operating within limits. There are plenty of candidates that can be applied to design the regulators for limit protection. PID control with gain-scheduling technique has been used for decades in the aerospace industry. This classic approach suggests linearizing the original nonlinear model at different power-level points, developing PID controllers correspondingly, and then scheduling the linear time-invariant (LTI) controllers according to system states. Sliding mode control (SMC) is well-known with mature theories and numerous successful applications. With the one-sided convergence property, SMC is especially suitable for limit protection tasks. In the case of aircraft engine control, SMC regulators have been developed to supplant traditional linear regulators, where SMC can strictly keep relevant outputs within their limits and improve the control performance. In aircraft engine control field, we all know that the plant is a nonlinear system. However, the present design of the sliding controller is carried out with linear models, which severely restricts the valid scope of the controller. Even if the gain scheduling technique is adopted, the stability of the whole systems cannot be theoretically proved. Research of linear parameter varying (LPV) system throws light on a class of nonlinear control problems. In present works, we propose a controller design method based on the LPV model to solve the engines control problem and achieve considerable effectiveness. In this paper, we discuss the design of a sliding controller for limit protection task of aircraft engines, the plant of which is described as an LPV system instead of LTI models. We define the sliding surface as tracking errors and, with the aid of vertex property, present the stability analysis of the closed-loop system on the sliding surface. An SMC law is designed to guarantee that the closed-loop system is globally attracted to the sliding surface. Hot day (ISA+30° C) takeoff simulations based on a reliable turbofan model are presented, which test the proposed method for temperature protection and verify its stability and effectiveness.


Vestnik IGEU ◽  
2020 ◽  
pp. 31-45
Author(s):  
T.H. Abuziarov ◽  
A.S. Plehov ◽  
A.B. Dar’enkov ◽  
A.I. Ermolaev

When designing electric drives based on brushless DC motors with permanent magnets (BLDC), which have low level torque pulsations, the problem of modelling non-standard topological solutions appears. The known models of BLDC motors are either based on the assumptions about the symmetry of the stator pa-rameters of the electric motor and/or the ideal form of the phase back-EMF waveform, which reduce the accuracy of evaluating the effectiveness of the proposed solutions or prove unusable for modelling an operation of the electric motor with a non-standard semiconductor converter. It is necessary to develop a mathematical model of the BLDC motor-based electric drive that takes into account the structural features of the electric motor and allows for semiconductor converter configuration variability. The model is designed in the Matlab Simulink environment. The verification is carried out by comparing the modelling results with experimental data obtained previously by other researchers. The proposed method for generating phase back-EMF in the BLDC motor model provides the possibility for the user to set the EMF form templates independent for each phase. The proposed method for stator circuit simulating provides the user with access to each of the stator windings leads as well as with the possibility of asymmetric determination of each parameter of the electric motor. Upon verification, it has been shown that the difference in the control points between the simulated and experimental speed-torque curves does not exceed 3,5 %. The developed model allows analyzing the static and dynamic characteristics of operation modes of non-standard topology BLDC motor-based electric drives taking into account the stator pa-rameters asymmetry and the real phase back-EMF waveform. The specified features of the model allow exploring the operation of the designed electric drive, taking into account the BLDC motor and converter design. The model can be applied when checking atypical design decisions and when changing the set parameters of the electric drive and restrictions on working conditions and target functions to refine the control system algorithms and automate the search for optimal parameters of the motor and the semiconductor converter.


2009 ◽  
Vol 6 (3) ◽  
pp. 495-505 ◽  
Author(s):  
Milutin Petronijevic ◽  
Nebojsa Mitrovic ◽  
Vojkan Kostic ◽  
Bojan Bankovic

This paper researches unsymmetrical voltage sag influence on torque ripple in scalar controlled (V/Hz), rotor field oriented (RFO) and direct torque controlled (DTC) drives. Electric drives performance degradation during voltage sag mainly depends on the used control algorithm. Industrial drives with all three types control methods are experimentally tested. Experiments with digital observer's application confirm the proposed solution. .


Sign in / Sign up

Export Citation Format

Share Document