scholarly journals Influence of Molybdenum Addition on Mechanical Properties of Low Carbon HSLA-100 Steel

2014 ◽  
Vol 59 (3) ◽  
pp. 859-864 ◽  
Author(s):  
R. Bogucki ◽  
S.M. Pytel

Abstract The results of mechanical properties and microstructure observation of low carbon copper bearing steel with high addition of molybdenum are presented in this paper. This steels were characterized by contents of molybdenum in the range from 1% to 3% wt. After the thermo -mechanical processing the steels were subsequently quenched and tempered at different temperatures (500-800 °C) for 1h. The changes of mechanical properties as function of tempering temperature were typical for the steel with the copper addition. The sudden drop of impact resistance after tempering from 575 °C to 600 °C was caused probably by precipitates of Laves phase of type Fe2Mo.

2013 ◽  
Vol 393 ◽  
pp. 126-129
Author(s):  
Bulan Abdullah ◽  
Siti Khadijah Alias ◽  
Ahmed Jaffar ◽  
Abdul Hakim Abdullah ◽  
Syazuan Abdul Latip ◽  
...  

The applications of ductile iron in numerous engineering applications require continuous effort in properties enhancement due to the necessity of product sustainability and performance. The studies highlighted the effect of 0.5 wt% titanium and niobium addition the mechanical properties of tempered ductile iron. The samples were prepared through conventional CO2 sand casting process. Heat treatment was conducted by austenitizing at 900°C for 1 hour and subsequently oil quenching before tempered at three different temperatures which are 500°C, 600°C and 700°C at 1 hour holding time. The mechanical properties were evaluated through impact (ASTM E23) and hardness (Rockwell) test. Microstructure observation and XRD analysis was also performed on as cast and tempered samples. The findings indicated that increasing the tempering temperature at 700°C enhanced the hardness and tensile strength of tempered alloyed ductile iron compared to other samples. The enhancement of the mechanical properties of tempered alloyed ductile iron is expected to further expand the applications of ductile iron.


2015 ◽  
pp. 405-437

Abstract Steels with martensitic and tempered martensitic microstructures, though sometimes perceived as brittle, exhibit plasticity and ductile fracture behavior under certain conditions. This chapter describes the alloying and tempering conditions that produce a ductile form of martensite in low-carbon steels. It also discusses the effect of tempering temperature on the mechanical behavior and deformation properties of medium-carbon steels.


2021 ◽  
Vol 8 (5) ◽  
pp. 836-851
Author(s):  
Hiremath Pavan ◽  
◽  
M. C. Gowrishankar ◽  
Shettar Manjunath ◽  
Sharma Sathyashankara ◽  
...  

<abstract> <p>Steel is a versatile metal, got a wide range of applications in all the fields of engineering and technology. Generally, low carbon steels are tough and high alloy carbon steels are hard in nature. Certain applications demand both properties in the same steel. Carburization is one such technique that develops hard and wear resistant surfaces with a soft core. The objective of this work is to study the influence of post carburizing treatment (normalizing) on three grades of steels (EN 3, 20MnCr5, and EN 353). Post carburizing treatments are necessary to overcome the adverse effects of carburization alone. Here carburization was carried out in the propane atmosphere by heating the gas carburizing furnace to 930 ℃ for more than a day. Normalizing was carried out at 870 ℃ for 1 h and cooled in air. Tensile, hardness, Charpy impact tests along with SEM (scanning electron microscopy) and EDAX (energy dispersive X-ray analysis) were conducted to analyze the phase transformation, failure mode analysis in all the samples. Carburized steels displayed the formation of ferrite, pearlite, and sometimes bainite phases in the core and complete coarse pearlite in the case regions, whereas in the post carburized steels, increased amount of ferrite, fine pearlite, and bainite in the core and fine pearlite with traces of bainite in the case region was observed. Normalizing also refines the grain with increased UTS (ultimate tensile strength), hardness, and impact resistance. EN 353 showed higher UTS among the steels with 898 MPa after carburization and 1370 MPa after normalizing treatment. Maximum hardness of 48 HRC was observed in 20MnCr5 and toughness was superior in EN 3 with energy absorbed during test i.e., 8 and 12 J before and after normalizing treatment. Based on the fracture surface analysis, in EN 353 steel, a finer array of dimples with voids and elongated bigger clustered dimples containing ultrafine dimples array are observed in the core and case respectively during carburizing whereas, more density of river pattern and cleavage failure (brittle) are observed in the core and case respectively after post carburizing (normalizing) treatment. There is a reduction in the ductility of the steels after post carburizing treatment. It was observed that normalizing treatment produces superior mechanical properties in the carburized steels by grain refinement and strong microstructures like bainite. Normalizing as post carburizing treatment can be recommended for engineering applications where ductile core and hard surface are of great importance.</p> </abstract>


2013 ◽  
Vol 744 ◽  
pp. 329-333
Author(s):  
Feng Lu ◽  
Chao Wang ◽  
Yuan Yuan Li ◽  
Long Lu ◽  
Zhao Dong Wang ◽  
...  

The chemical composition of a 960 Mpa grade high strength steel with low carbon equivalent was designed. Effect of direct quenching and tempering process on the microstructure and mechanical properties of the experimental steel was studied. Results showed that fine lath martensite was obtained after controlled rolling and direct quenching. With tempering temperature increasing, the mechanical properties showed different trends for different tempering stages. And this had a direct relationship with the microstructure evolution. The matrix recovery softening, carbon desolution and precipitation of nanomicroalloy carbides influenced the strength change. With increase of tempering time, the strength decreased and toughness improved. Experimental steel tempered at 450 °C for 40min could obtain the best mechanical properties, which meet the requirement with a large impact energy margin.


2014 ◽  
Vol 59 (2) ◽  
pp. 575-580 ◽  
Author(s):  
M. Sułowski ◽  
A. Ciaś ◽  
T. Pieczonka

Abstract The paper presents the effect of sintering conditions on the microstructure and mechanical properties of low-carbon Mn-Cr-Mo PM steels. It was proved there is no effect of tempering temperature on the properties of Astaloy CrL-base steels, sintered at 1250°C in 5%H2-95%N2 mixture as compared with the properties of those sintered at 1120°C. The properties of Astaloy CrM-based steels, sintered at 1250°C in air were comparable or higher to Astaloy CrL-based steels. The addition of lump of ferromanganese was not sufficient for metal oxides reduction. The structure investigation confirmed the earlier observations that Mn-Cr-Mo PM steels have predominantly martensitic or martensitic/bainitic microstructure.


2012 ◽  
Vol 535-537 ◽  
pp. 601-604
Author(s):  
Wen Hao Zhou ◽  
Hui Guo ◽  
Cheng Jia Shang

The influence of tempering temperature on the microstructure and mechanical properties of low carbon low alloy steel was investigated. The results show that tempering temperature has considerable influence on both yield strength and tensile strength. With the increase in tempering temperature, the yield strength increases first and then decreases after it reaches the highest point at 600°C with a strength of 843MPa, while the tensile strength decreases fastly from 550°C to 650°C and keeps stable after increasing drastically at 720°C. The yield ratio is about 0.60 except at 600°C and 650°C with a high yield ratio of 0.90, while the total elongation has little change. It is concluded that the major change of mechanical properties after tempering has a connection with the decomposition of M/A(martensite/austenite) islands, the recovery of dislocations and the precipitation of alloy elements.


2018 ◽  
Vol 941 ◽  
pp. 474-479
Author(s):  
Sung Il Kim ◽  
Seok Jong Seo ◽  
In Shik Suh

We examined the effects of tempering process and alloying elements on the microstucture, tensile properties, bendability and impact property of direct quenched (DQ), and re-austenitizing and quenched (RQ) low-carbon martensitic steels. For this purpose, four low carbon martensitic steels (Fe-0.07C-1.8Mn-Cr-Nb-Ti-B) were selected. We have investigated the effects of tempering temperature and alloying elements of chromium (Cr), titanium (Ti) and niobium (Nb) on mechanical properties and microstructures. Mechanical properties and microstructures were analyzed as well using tensile test, V-bending test, charpy V-notched impact test and electron microscopy for DQ, DQ and tempered (DQ-T), RQ and RQ and tempered (RQ-T) low-carbon martensitic steels. It has been found that the as-quenched microstructures of the DQ and RQ specimens were fully martensitic structure. Prior austenite grain size and effective grain size after quenching were larger in the case of RQ steel. In both cases, tempering made the needle-shaped carbides. It is shown that the strength decreased when the tempering temperature increased. The strengths of the DQ and DQ-T steels were 30~50MPa higher than those of the RQ and RQ-T steels. Despite the higher strength of the DQ and DQ-T states, both had similar impact properties with the RQ and RQ-T states. However, the impact properties of the Nb added RQ and RQ-T steels with fine martensite morphology exhibited higher than those of DQ and DQ-T steels.


Sign in / Sign up

Export Citation Format

Share Document