scholarly journals Consideration of phthalates distribution in underground water in some selected regions in Delta State, Southern Nigeria

2020 ◽  
Vol 31 (1) ◽  
pp. 44-48
Author(s):  
Oghenekohwiroro Edjere ◽  
Christiana Ene Ogwuche ◽  
Uwem Bassey ◽  
Akpofure Rim-Rukeh

AbstractThe choice of phthalates as plasticizers have been on the increase especially in household products. They are ubiquitous environmental pollutants due to their physical attribute. This study was carried out to determine the occurrence and level of phthalates in the groundwater in some regions of Delta State. Groundwater samples were collected from fourteen sampling points and analyzed using standard procedures. The obtained results showed that the concentration (µg/l) of six phthalate ester compounds present in the water samples was of the order: < 0.05 - 0.05 BBP, < 0.05 - 3.71 BEHP, < 0.05 - 0.54 DBP, < 0.05 - 0.55 DEP, < 0.05 - 0.13 DMP, and < 0.05 - 0.48 DnOP. BEHP was observed to be the major compound of the phthalate acid esters present in most sampling stations, whilst others, especially BBP, were found to be in low concentration and does not pose any immediate threat to human health. The presence of BEHP in most samples from different locations suggests an inflow of the phthalate to underground water, hence it becomes imperative for continuous monitoring and a call to various governments and environmental regulatory agencies to establish standards for phthalate esters in order to monitor its presence in the environment.

2021 ◽  
Vol 13 (2) ◽  
pp. 529
Author(s):  
Olga Anne ◽  
Tatjana Paulauskiene

Phthalate acid esters (PAEs) are widely used as raw materials for industries that are well known for their environmental contamination and toxicological effects as “endocrine disruptors”. The determining of PAE contamination was based on analysis of dimethyl phthalate (DMP), diethyl phthalate (DEP), dipropyl phthalate (DPP), dibutyl phthalate (DBP), diisobutyl phthalate (DiBP), dicyclohexyl phthalate (DCHP) and di(2-ethylhexyl) phthalate (DEHP) in wastewater and sediment samples collected from city sewer systems of Lithuania and Poland, and Denmark for comparison. The potential PAE sources as well as their concentrations in the wastewater were analyzed and discussed. The intention of the study was to determine the level and key sources of pollution by phthalates in some Eastern European countries and to reveal the successful managerial actions to minimize PAEs taken by Denmark. Water and sludge samples were collected in 2019–2020 and analyzed by gas chromatography-mass spectrometry. The highest contamination with phthalates in Lithuania can be attributed to DEHP: up to 63% of total PAEs in water samples and up to 94% of total PAEs in sludge samples, which are primarily used as additive compounds to plastics but do not react with them and are gradually released into the environment. However, in water samples in Poland, the highest concentration belonged to DMP—up to 210 μg/L, while the share of DEHP reached 15 μg/L. The concentrations of priority phthalate esters in the water samples reached up to 159 μg/L (DEHP) in Lithuania and up to 1.2 μg/L (DEHP) in Denmark. The biggest DEHP concentrations obtained in the sediment samples were 95 mg/kg in Lithuania and up to 6.6 mg/kg in Denmark. The dominant compounds of PAEs in water samples of Lithuania were DEHP > DEP > DiBP > DBP > DMP. DPP and DCHP concentrations were less than 0.05 μg/L. However, the distribution of PAEs in the water samples from Poland was as follows: DMP > DEHP > DEP > DBP, and DiBP, as well as DPP and DCHP, concentrations were less than 0.05 μg/L. Further studies are recommended for adequate monitoring of phthalates in wastewater and sludge in order to reduce or/and predict phthalates’ potential risk to hydrobiots and human health.


2021 ◽  
Author(s):  
Hana Rezaei ◽  
Mojtaba Moazzen ◽  
Nabi Shariatifar ◽  
Gholamreza Jahed Khaniki ◽  
Mohammad Hadi Dehghani ◽  
...  

Abstract The goal of this research was to assess the phthalic acid esters (DEP, DMP, BBP, DBP, DEHP, DnOP and total PAE) in non-alcoholic malt beverages bottled were magnetized with iron (MWCNT-Fe3O4) using Mass spectrometry is gas chromatography (GC-MS) in Tehran. The results showed that maximum and minimum of total phthalate esters in samples were 9483.93 and 2412.50 ng/l, respectively. The mean of DEHP (which has also been found to be carcinogenic) in all samples was lower than 5944.73 ng/l. The maximum concentration of DEHP in four samples was upper than 8957.87 ng/l. Multivariate techniques and heat-map visualization were used to assess the correlation among the type and levels of PAEs with brand, color, product date, pH, sugar, volume and gas pressure. Therefore, based on heat-map and principal component analysis (PCA) results, the Bis (2- ethyl hexyl) phthalate (DEHP) and total PAEs were the closest accessions, indicating that these variables had similar trends. Based on the results, it can be stated that due to the low average of total phthalate esters in non-alcoholic malt beverages, there is no serious health hazard of these compounds for humans.


2009 ◽  
Vol 76 (5) ◽  
pp. 1516-1523 ◽  
Author(s):  
Hirofumi Hara ◽  
Gordon R. Stewart ◽  
William W. Mohn

ABSTRACT Phthalate esters (PEs) are important environmental pollutants. While the biodegradation of the parent compound, phthalate (PTH), is well characterized, the biodegradation of PEs is not well understood. In particular, prior to this study, genes involved in the uptake and hydrolysis of these compounds were not conclusively identified. We found that Rhodococcus jostii RHA1 could grow on a variety of monoalkyl PEs, including methyl, butyl, hexyl, and 2-ethylhexyl PTHs. Strain RHA1 could not grow on most dialkyl PEs, but suspensions of cells grown on PTH transformed dimethyl, diethyl, dipropyl, dibutyl, dihexyl and di-(2-ethylhexyl) PTHs. The major products of these dialkyl PEs were PTH and the corresponding monoalkyl PEs, and minor products resulted from the shortening of the alkyl side chains. RHA1 exhibited an inducible, ATP-dependent uptake system for PTH with a Km of 22 μM. The deletion and complementation of the patB gene demonstrated that the ATP-binding cassette (ABC) transporter encoded by patDABC is required for the uptake of PTH and monoalkyl PEs by RHA1. The hydrolase encoded by patE of RHA1 was expressed in Escherichia coli. PatE specifically hydrolyzed monoalkyl PEs to PTH but did not transform dialkyl PEs or other aromatic esters. This investigation of RHA1 elucidates key processes that are consistent with the environmental fate of PEs.


Author(s):  
Anjum Afshan ◽  
Md Niamat Ali ◽  
Farooz Ahmed Bhat

Environmental pollutants, like xenobiotic substances released as byproducts of anthropogenic actions, naturally lead to pollution of the environment. They negatively affect the environment through unfavorable impacts on growth, development, and reproduction of organisms including humans. One of the outstanding examples of xenobiotics is endocrine disrupting compounds (EDCs) such as phthalate esters (PEs), which have the efficacy to disturb numerous biological systems including the invertebrate, reptilian, avian, aquatic, and also the mammalian systems. Phthalates are family of xenobiotic hazardous compounds amalgamating in plastics to intensify their plasticity, flexibility, longevity, versatility, and durability. Ignoring the rising issue on the hazardous nature of various phthalates and their metabolites, ruthless usage of phthalates as plasticizer in plastics and as additives in innumerable consumer products continues due to their low eminent properties, their cost-effectiveness, and lack of suitable alternatives. Globally epidemiological human studies showed various phthalates and their metabolites ingested passively by man from the general environment, foods, drinks, breathing air, and routine household products cause various dysfunctions. This comprehensive chapter on the hazards of phthalates would benefit the general population, academia, scientists, clinicians, environmentalists, and law or policymakers to decide upon whether usage of phthalates to be continued swiftly without sufficient deceleration or regulated by law or to be phased out from earth forever.


2021 ◽  
Vol 55 (6) ◽  
pp. 3676-3685
Author(s):  
Yu Wang ◽  
Fang Wang ◽  
Leilei Xiang ◽  
Chenggang Gu ◽  
Marc Redmile-Gordon ◽  
...  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Diksha Sirohi ◽  
Ruqaiya Al Ramadhani ◽  
Luke D. Knibbs

AbstractPurposeEndocrine-related diseases and disorders are on the rise globally. Synthetically produced environmental chemicals (endocrine-disrupting chemicals (EDCs)) mimic hormones like oestrogen and alter signalling pathways. Endometriosis is an oestrogen-dependent condition, affecting 10–15% of women of the reproductive age, and has substantial impacts on the quality of life. The aetiology of endometriosis is believed to be multifactorial, ranging from genetic causes to immunologic dysfunction due to environmental exposure to EDCs. Hence, we undertook a systematic review and investigated the epidemiological evidence for an association between EDCs and the development of endometriosis. We also aimed to assess studies on the relationship between body concentration of EDCs and the severity of endometriosis.MethodFollowing PRISMA guidelines, a structured search of PubMed, Embase and Scopus was conducted (to July 2018). The included studies analysed the association between one or more EDCs and the prevalence of endometriosis. The types of EDCs, association and outcome, participant characteristics and confounding variables were extracted and analysed. Quality assessment was performed using standard criteria.ResultsIn total, 29 studies were included. Phthalate esters were positively associated with the prevalence of endometriosis. The majority (71%) of studies revealed a significant association between bisphenol A, organochlorinated environmental pollutants (dioxins, dioxin-like compounds, organochlorinated pesticides, polychlorinated biphenyls) and the prevalence of endometriosis. A positive association between copper, chromium and prevalence of endometriosis was demonstrated in one study only. Cadmium, lead and mercury were not associated with the prevalence of endometriosis. There were conflicting results for the association between nickel and endometriosis. The relationship of EDCs and severity of endometriosis was not established in the studies.ConclusionWe found some evidence to suggest an association between phthalate esters, bisphenol A, organochlorinated environmental pollutants and the prevalence of endometriosis. Disentangling these exposures from various other factors that affect endometriosis is complex, but an important topic for further research.


2009 ◽  
Vol 6 (3) ◽  
pp. 898-904
Author(s):  
D. Ilangeswaran ◽  
R. Kumar ◽  
D. Kannan

Various samples of groundwater were collected from different areas of Kandarvakottai and Karambakudi of Pudukkottai District, Tamilnadu and analyzed for their physicochemical characteristics. The results of this analysis were compared with the water quality standards of ISI, WHO and CPHEEO. In this analysis the various physicochemical parameters such as pH, electrical conductivity, turbidity, total dissolved solids, Cl-, F-, SO42-, PO43-, NO3-, NO2-, CN-, Nas+, K+, NH3, Mn, Fe, Ca & Mg hardnessetc., were determined using standard procedures. The quality of groundwater samples were discussed with respect to these parameters and thus an attempt were made to ascertain the quality of groundwater used for drinking and cooking purposes in and around Kandarvakottai and Karambakudi areas.


Sign in / Sign up

Export Citation Format

Share Document