scholarly journals Mechanical Properties Of 3D-Structure Composites Based On Warp-Knitted Spacer Fabrics

2015 ◽  
Vol 15 (2) ◽  
pp. 127-137 ◽  
Author(s):  
Si Chen ◽  
Hai-ru Long ◽  
Ying-hao Liu ◽  
Feng-chao Hu

Abstract In this paper, the mechanical properties (compression and impact behaviours) of three-dimension structure (3D-structure) composites based on warp-knitted spacer fabrics have been thoroughly investigated. In order to discuss the effect of fabric structural parameters on the mechanical performance of composites, six different types of warp-knitted spacer fabrics having different structural parameters (such as outer layer structure, diameter of spacer yarn, spacer yarn inclination angle and thickness) were involved for comparison study. The 3D-structure composites were fabricated based on a flexible polyurethane foam. The produced composites were characterised for compression and impact properties. The findings obtained indicate that the fabric structural parameters have strong influence on the compression and impact responses of 3D-structure composites. Additionally, the impact test carried out on the 3D-structure composites shows that the impact loads do not affect the integrity of composite structure. All the results reveal that the product exhibits promising mechanical performance and its service life can be sustained.

2021 ◽  
pp. 002199832199945
Author(s):  
Jong H Eun ◽  
Bo K Choi ◽  
Sun M Sung ◽  
Min S Kim ◽  
Joon S Lee

In this study, carbon/epoxy composites were manufactured by coating with a polyamide at different weight percentages (5 wt.%, 10 wt.%, 15 wt.%, and 20 wt.%) to improve their impact resistance and fracture toughness. The chemical reaction between the polyamide and epoxy resin were examined by fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray photoelectron spectroscopy. The mechanical properties and fracture toughness of the carbon/epoxy composites were analyzed. The mechanical properties of the carbon/epoxy composites, such as transverse flexural tests, longitudinal flexural tests, and impact tests, were investigated. After the impact tests, an ultrasonic C-scan was performed to reveal the internal damage area. The interlaminar fracture toughness of the carbon/epoxy composites was measured using a mode I test. The critical energy release rates were increased by 77% compared to the virgin carbon/epoxy composites. The surface morphology of the fractured surface was observed. The toughening mechanism of the carbon/epoxy composites was suggested based on the confirmed experimental data.


2009 ◽  
Vol 1187 ◽  
Author(s):  
Jakob R Eltzholtz ◽  
Marie Krogsgaard ◽  
Henrik Birkedal

AbstractBiology has evolved several strategies for attachment of sedentary animals. In the bivalves, byssi abound and the best known example being the protein-based byssus of the blue mussel and other Mytilidae. In contrast the bivalve Anomia sp. has a single calcified thread. The byssus is hierarchical in design and contains several different types of structures as revealed by scanning electron microscopy images. The mechanical properties of the byssus are probed by nanoindentation. It is found that the mineralized part of the byssus is very stiff with a reduced modulus of about 67 GPa and a hardness of ˜3.7 GPa. This corresponds to a modulus roughly 20% smaller than that of pure calcite and a hardness that is about 20% larger than pure calcite. The results reveal the importance of microstructure on mechanical performance.


2018 ◽  
Vol 26 (2(128)) ◽  
pp. 79-86 ◽  
Author(s):  
Pengbi Liu ◽  
Hong Shao ◽  
Nanliang Chen ◽  
Nanliang Cheng ◽  
Jinhua Jiang ◽  
...  

This paper studied the relationship between the textile structure of warp knitted hernia repair meshes and their physico-mechanical properties to solve the problem of hernia patch application evaluation and clear the mechanism of hernia patch structure-performance for clinical application. Six different prototypes of large pore meshes were fabricated, including four kinds of meshes with different pore shapes: H (hexagonal), D (diamond), R (round) and P (pentagonal); and two kinds of meshes with inlays: HL (hexagonal with inlays) and DL (diamond with inlays), using the same medical grade polypropylene monofilament. All meshes were designed with the same walewise density and coursewise density. Then the influence of other structural parameters on the physico-mechanical properties of the meshes was analysed. The physico-mechanical properties of these meshes tested meet the requirements of hernia repair, except mesh DL, whose tear resistance strength (12.93 ± 2.44 N in the transverse direction) was not enough. Mesh R and P demonstrated less anisotropy, and they exhibited similar physico-mechanical properties. These four kinds of meshes without inlays demonstrated similar ball burst strength properties, but mesh HL and DL exhibited better ball burst strength than the others. All in all, uniform structures are expected to result in less anisotropy, and meshes with inlays, to some extent, possess higher mechanical properties. And the ratio of open loop number to closed loop number in a repetition of weave of fabric has marked effect on the physico-mechanical properties. Thus we can meet the demands of specific patients and particular repair sites by designing various meshes with appropriate textile structures.


Author(s):  
Henry Koon ◽  
Jack Laven ◽  
Julianna Abel

Knitted Textiles made from Nickel-Titanium (NiTi) shape memory alloy wires are a new structural element with enhanced properties for a variety of applications. Potential advantages of this structural form include enhanced bending flexibility, tailorable in-plane, and through-thickness mechanical performance, and energy absorption and damping. Inspection of the knit pattern reveals a repeating cell structure of interlocking loops. Because of this repeating structure, knits can be evaluated as cellular structures that leverage their loop-based architecture for mechanical robustness and flexibility. The flexibility and robustness of the structure can be further enhanced by manufacturing with superelastic NiTi. The stiffness of superelastic NiTi, however, makes traditional knit manufacturing techniques inadequate, so knit manufacturing in this research is aided by shape setting the superelastic wire to a predefined pattern mimicking the natural curve of a strand within a knit fabric. This predefined shape-set geometry determines the outcome of the knit’s mechanical performance and tunes the mechanical properties. In this research, the impact of the shape setting process on the material itself is explored through axial loading tests to quantify the effect that heat treatment has on a knit sample. A means of continuously shape setting and feeding the wire into traditional knitting machines is described. These processes lend themselves to mass production and build upon previous textile manufacturing technologies. This research also proposes an empirical exploration of superelastic NiTi knit mechanical performance and several new techniques for manufacturing such knits with adjustable knit parameters. Displacement-controlled axial loading tests in the vertical (wale) direction determined the recoverability of each knit sample in the research and were iteratively increased until failure resulted. Knit samples showed recoverable axial strains of 65–140%, which could be moderately altered based on knit pattern and loop parameters. Furthermore, this research demonstrates that improving the density of the knit increases the stiffness of the knit without any loss in recoverable strains. These results highlight the potential of this unique structural architecture that could be used to design fabrics with adjustable mechanical properties, expanding the design space for aerospace structures, medical devices, and consumer products.


2020 ◽  
Vol 4 (1) ◽  
pp. 5
Author(s):  
Nhan Thi Thanh Nguyen ◽  
Obunai Kiyotaka ◽  
Okubo Kazuya ◽  
Fujii Toru ◽  
Shibata Ou ◽  
...  

In this research, three kinds of carbon fiber (CF) with lengths of 1, 3, and 25 mm were prepared for processing composite. The effect of submicron glass fiber addition (sGF) on mechanical properties of composites with different CF lengths was investigated and compared throughout static tests (i.e., bending, tensile, and impact), as well as the tension-tension fatigue test. The strengths of composites increased with the increase of CF length. However, there was a significant improvement when the fiber length changed from 1 to 3 mm. The mechanical performance of 3 and 25 mm was almost the same when having an equal volume fraction, except for the impact resistance. Comparing the static strengths when varying the sGF content, an improvement of bending strength was confirmed when sGF was added into 1 mm composite due to toughened matrix. However, when longer fiber was used and fiber concentration was high, mechanical properties of composite were almost dependent on the CF. Therefore, the modification effect of matrix due to sGF addition disappeared. In contrast to the static strengths, the fatigue durability of composites increased proportionally to the content of glass fiber in the matrix, regardless to CF length.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4801
Author(s):  
Yasir Khaleel Kirmasha ◽  
Mohaiman J. Sharba ◽  
Zulkiflle Leman ◽  
Mohamed Thariq Hameed Sultan

Fiber composites are known to have poor through-thickness mechanical properties due to the absence of a Z-direction binder. This issue is more critical with the use of natural fibers due to their low strength compared to synthetic fibers. Stitching is a through-thickness toughening method that is used to introduce fibers in the Z-direction, which will result in better through-thickness mechanical properties. This research was carried out to determine the mechanical properties of unstitched and silk fiber-stitched woven kenaf-reinforced epoxy composites. The woven kenaf mat was stitched with silk fiber using a commercial sewing machine. The specimens were fabricated using a hand lay-up method. Three specimens were fabricated, one unstitched and two silk-stitched with deferent stitching orientations. The results show that the stitched specimens have comparable in-plane mechanical properties to the unstitched specimens. For the tensile mechanical test, stitched specimens show similar and 17.1% higher tensile strength compared to the unstitched specimens. The flexural mechanical test results show around a 9% decrease in the flexural strength for the stitched specimens. On the other hand, the Izod impact mechanical test results show a significant improvement of 33% for the stitched specimens, which means that stitching has successfully improved the out-of-plane mechanical properties. The outcome of this research indicates that the stitched specimens have better mechanical performance compared to the unstitched specimens and that the decrease in the flexural strength is insignificant in contrast with the remarkable enhancement in the impact strength.


2007 ◽  
Vol 129 (3) ◽  
pp. 586-594 ◽  
Author(s):  
H. Yu ◽  
R. Ahmed ◽  
H. de Villiers Lovelock

This paper aims to compare the tribo-mechanical properties and structure–property relationships of a wear resistant cobalt-based alloy produced via two different manufacturing routes, namely sand casting and powder consolidation by hot isostatic pressing (HIPing). The alloy had a nominal wt % composition of Co–33Cr–17.5W–2.5C, which is similar to the composition of commercially available Stellite 20 alloy. The high tungsten and carbon contents provide resistance to severe abrasive and sliding wear. However, the coarse carbide structure of the cast alloy also gives rise to brittleness. Hence this research was conducted to comprehend if the carbide refinement and corresponding changes in the microstructure, caused by changing the processing route to HIPing, could provide additional merits in the tribo-mechanical performance of this alloy. The HIPed alloy possessed a much finer microstructure than the cast alloy. Both alloys had similar hardness, but the impact resistance of the HIPed alloy was an order of magnitude higher than the cast counterpart. Despite similar abrasive and sliding wear resistance of both alloys, their main wear mechanisms were different due to their different carbide morphologies. Brittle fracture of the carbides and ploughing of the matrix were the main wear mechanisms for the cast alloy, whereas ploughing and carbide pullout were the dominant wear mechanisms for the HIPed alloy. The HIPed alloy showed significant improvement in contact fatigue performance, indicating its superior impact and fatigue resistance without compromising the hardness and sliding∕abrasive wear resistance, which makes it suitable for relatively higher stress applications.


2008 ◽  
Vol 144 ◽  
pp. 267-272
Author(s):  
Alexander S. Chaus

In order to exhibit good all-round performance the impact toughness enhancement of cast high-speed steels (HSS) is obligatorily needed. In general, different methods are used commercially to achieve cast structure refinement and, as a consequence, their properties are improved. Introduction into the melt of inoculants particles or surface-active additions is among most beneficial. However, the effect of modifying additions in cast HSS has been studied insufficiently. For this reason the theoretical evaluation and experimental confirmation of the modifying and refining effects of 23 chemical elements in HSS have been carried out. The relationships between the structural parameters and mechanical properties in the M2 and T30 HSS have been established.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012234
Author(s):  
Yogeesha Pai ◽  
Dayananda Pai K ◽  
M Vijaya Kini

Abstract Polymer composites used in outdoor applications are exposed to environmental factors such as temperature and moisture which may affect the mechanical performance of the composites. In this study, the influence of moisture absorption on the mechanical properties of basalt-aramid/epoxy hybrid interply composites were evaluated. Two different types hybrid interply composites were taken for the investigation namely (301 A/03 B/301 A) and (451 A/03B/451 A). Composites were prepared using compression molding process and cut specimens were subjected to three different ageing environments for 180 days. Selected ageing conditions are, (i) ambient temperature ageing (ii) Sub-zero temperature ageing (−10°C) and (iii) Humid temperature ageing (40°C and 60% Relative humidity). Mechanical tests of the aged composites were carried out to analyse the behaviour of the composites. Moisture uptake of the specimens follow Fick’s law of diffusion with saturation absorption of 5.44%, 3.12% and 1.80% for ambient, sub-zero and humid specimens respectively. Results revealed that (301 a/03 B/301 a) aged composites possess higher mechanical properties compared to (451 a/03 B/451 a) aged composites. Highest reduction in properties were observed in ambient aged specimens followed by humid and sub-zero specimens. Scanning electron microscopy (SEM) was employed to observe the damage modes of the fractured specimens. Matrix deterioration, micro cracks and fibre fracture were the major types of failures observed in aged laminates.


2021 ◽  
Vol 6 (3) ◽  
pp. 142-147
Author(s):  
Andrei RĂȚOI ◽  
Corneliu MUNTEANU ◽  
Bogdan ISTRATE ◽  
Dan ELIEZER

The article reviews the research findings available on different types of glasses that presents potential use for high pressure gas hydrogen storage systems. An overview of the mechanical properties of different glasses, the influence of main constituents and the impact of defects to the strength of glass was presented. As part of this research, it can be concluded that the glass gets a significant improvement of tensile strength by reducing its dimensions to fibre sizes or capillaries due to reduced probability of defects presence.


Sign in / Sign up

Export Citation Format

Share Document