Manufacture of Ultra-Dense Knitted Superelastic Structures

Author(s):  
Henry Koon ◽  
Jack Laven ◽  
Julianna Abel

Knitted Textiles made from Nickel-Titanium (NiTi) shape memory alloy wires are a new structural element with enhanced properties for a variety of applications. Potential advantages of this structural form include enhanced bending flexibility, tailorable in-plane, and through-thickness mechanical performance, and energy absorption and damping. Inspection of the knit pattern reveals a repeating cell structure of interlocking loops. Because of this repeating structure, knits can be evaluated as cellular structures that leverage their loop-based architecture for mechanical robustness and flexibility. The flexibility and robustness of the structure can be further enhanced by manufacturing with superelastic NiTi. The stiffness of superelastic NiTi, however, makes traditional knit manufacturing techniques inadequate, so knit manufacturing in this research is aided by shape setting the superelastic wire to a predefined pattern mimicking the natural curve of a strand within a knit fabric. This predefined shape-set geometry determines the outcome of the knit’s mechanical performance and tunes the mechanical properties. In this research, the impact of the shape setting process on the material itself is explored through axial loading tests to quantify the effect that heat treatment has on a knit sample. A means of continuously shape setting and feeding the wire into traditional knitting machines is described. These processes lend themselves to mass production and build upon previous textile manufacturing technologies. This research also proposes an empirical exploration of superelastic NiTi knit mechanical performance and several new techniques for manufacturing such knits with adjustable knit parameters. Displacement-controlled axial loading tests in the vertical (wale) direction determined the recoverability of each knit sample in the research and were iteratively increased until failure resulted. Knit samples showed recoverable axial strains of 65–140%, which could be moderately altered based on knit pattern and loop parameters. Furthermore, this research demonstrates that improving the density of the knit increases the stiffness of the knit without any loss in recoverable strains. These results highlight the potential of this unique structural architecture that could be used to design fabrics with adjustable mechanical properties, expanding the design space for aerospace structures, medical devices, and consumer products.

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2531
Author(s):  
Rodion Kopitzky

Sugar beet pulp (SBP) is a residue available in large quantities from the sugar industry, and can serve as a cost-effective bio-based and biodegradable filler for fully bio-based compounds based on bio-based polyesters. The heterogeneous cell structure of sugar beet suggests that the processing of SBP can affect the properties of the composite. An “Ultra-Rotor” type air turbulence mill was used to produce SBP particles of different sizes. These particles were processed in a twin-screw extruder with poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) and fillers to granules for possible marketable formulations. Different screw designs, compatibilizers and the use of glycerol as a thermoplasticization agent for SBP were also tested. The spherical, cubic, or ellipsoidal-like shaped particles of SBP are not suitable for usage as a fiber-like reinforcement. In addition, the fineness of ground SBP affects the mechanical properties because (i) a high proportion of polar surfaces leads to poor compatibility, and (ii) due to the inner structure of the particulate matter, the strength of the composite is limited to the cohesive strength of compressed sugar-cell compartments of the SBP. The compatibilization of the polymer–matrix–particle interface can be achieved by using compatibilizers of different types. Scanning electron microscopy (SEM) fracture patterns show that the compatibilization can lead to both well-bonded particles and cohesive fracture patterns in the matrix. Nevertheless, the mechanical properties are limited by the impact and elongation behavior. Therefore, the applications of SBP-based composites must be well considered.


2021 ◽  
pp. 002199832199945
Author(s):  
Jong H Eun ◽  
Bo K Choi ◽  
Sun M Sung ◽  
Min S Kim ◽  
Joon S Lee

In this study, carbon/epoxy composites were manufactured by coating with a polyamide at different weight percentages (5 wt.%, 10 wt.%, 15 wt.%, and 20 wt.%) to improve their impact resistance and fracture toughness. The chemical reaction between the polyamide and epoxy resin were examined by fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray photoelectron spectroscopy. The mechanical properties and fracture toughness of the carbon/epoxy composites were analyzed. The mechanical properties of the carbon/epoxy composites, such as transverse flexural tests, longitudinal flexural tests, and impact tests, were investigated. After the impact tests, an ultrasonic C-scan was performed to reveal the internal damage area. The interlaminar fracture toughness of the carbon/epoxy composites was measured using a mode I test. The critical energy release rates were increased by 77% compared to the virgin carbon/epoxy composites. The surface morphology of the fractured surface was observed. The toughening mechanism of the carbon/epoxy composites was suggested based on the confirmed experimental data.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 713-723
Author(s):  
Wei Gong ◽  
Tuan-Hui Jiang ◽  
Xiang-Bu Zeng ◽  
Li He ◽  
Chun Zhang

AbstractThe effects of the cell size and distribution on the mechanical properties of polypropylene foam were simulated and analyzed by finite element modeling with ANSYS and supporting experiments. The results show that the reduced cell size and narrow size distribution have beneficial influences on both the tensile and impact strengths. Decreasing the cell size or narrowing the cell size distribution was more effective for increasing the impact strength than the tensile strength in the same case. The relationship between the mechanical properties and cell structure parameters has a good correlation with the theoretical model.


2020 ◽  
Vol 4 (1) ◽  
pp. 5
Author(s):  
Nhan Thi Thanh Nguyen ◽  
Obunai Kiyotaka ◽  
Okubo Kazuya ◽  
Fujii Toru ◽  
Shibata Ou ◽  
...  

In this research, three kinds of carbon fiber (CF) with lengths of 1, 3, and 25 mm were prepared for processing composite. The effect of submicron glass fiber addition (sGF) on mechanical properties of composites with different CF lengths was investigated and compared throughout static tests (i.e., bending, tensile, and impact), as well as the tension-tension fatigue test. The strengths of composites increased with the increase of CF length. However, there was a significant improvement when the fiber length changed from 1 to 3 mm. The mechanical performance of 3 and 25 mm was almost the same when having an equal volume fraction, except for the impact resistance. Comparing the static strengths when varying the sGF content, an improvement of bending strength was confirmed when sGF was added into 1 mm composite due to toughened matrix. However, when longer fiber was used and fiber concentration was high, mechanical properties of composite were almost dependent on the CF. Therefore, the modification effect of matrix due to sGF addition disappeared. In contrast to the static strengths, the fatigue durability of composites increased proportionally to the content of glass fiber in the matrix, regardless to CF length.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4801
Author(s):  
Yasir Khaleel Kirmasha ◽  
Mohaiman J. Sharba ◽  
Zulkiflle Leman ◽  
Mohamed Thariq Hameed Sultan

Fiber composites are known to have poor through-thickness mechanical properties due to the absence of a Z-direction binder. This issue is more critical with the use of natural fibers due to their low strength compared to synthetic fibers. Stitching is a through-thickness toughening method that is used to introduce fibers in the Z-direction, which will result in better through-thickness mechanical properties. This research was carried out to determine the mechanical properties of unstitched and silk fiber-stitched woven kenaf-reinforced epoxy composites. The woven kenaf mat was stitched with silk fiber using a commercial sewing machine. The specimens were fabricated using a hand lay-up method. Three specimens were fabricated, one unstitched and two silk-stitched with deferent stitching orientations. The results show that the stitched specimens have comparable in-plane mechanical properties to the unstitched specimens. For the tensile mechanical test, stitched specimens show similar and 17.1% higher tensile strength compared to the unstitched specimens. The flexural mechanical test results show around a 9% decrease in the flexural strength for the stitched specimens. On the other hand, the Izod impact mechanical test results show a significant improvement of 33% for the stitched specimens, which means that stitching has successfully improved the out-of-plane mechanical properties. The outcome of this research indicates that the stitched specimens have better mechanical performance compared to the unstitched specimens and that the decrease in the flexural strength is insignificant in contrast with the remarkable enhancement in the impact strength.


2007 ◽  
Vol 129 (3) ◽  
pp. 586-594 ◽  
Author(s):  
H. Yu ◽  
R. Ahmed ◽  
H. de Villiers Lovelock

This paper aims to compare the tribo-mechanical properties and structure–property relationships of a wear resistant cobalt-based alloy produced via two different manufacturing routes, namely sand casting and powder consolidation by hot isostatic pressing (HIPing). The alloy had a nominal wt % composition of Co–33Cr–17.5W–2.5C, which is similar to the composition of commercially available Stellite 20 alloy. The high tungsten and carbon contents provide resistance to severe abrasive and sliding wear. However, the coarse carbide structure of the cast alloy also gives rise to brittleness. Hence this research was conducted to comprehend if the carbide refinement and corresponding changes in the microstructure, caused by changing the processing route to HIPing, could provide additional merits in the tribo-mechanical performance of this alloy. The HIPed alloy possessed a much finer microstructure than the cast alloy. Both alloys had similar hardness, but the impact resistance of the HIPed alloy was an order of magnitude higher than the cast counterpart. Despite similar abrasive and sliding wear resistance of both alloys, their main wear mechanisms were different due to their different carbide morphologies. Brittle fracture of the carbides and ploughing of the matrix were the main wear mechanisms for the cast alloy, whereas ploughing and carbide pullout were the dominant wear mechanisms for the HIPed alloy. The HIPed alloy showed significant improvement in contact fatigue performance, indicating its superior impact and fatigue resistance without compromising the hardness and sliding∕abrasive wear resistance, which makes it suitable for relatively higher stress applications.


Author(s):  
Albert Hernandez-Estrada ◽  
Jörg Müssig ◽  
Mark Hughes

AbstractThis work investigated the impact that the processing of hemp (C. sativa L.) fibre has on the mechanical properties of unidirectional fibre-reinforced epoxy resin composites loaded in axial tension, and particleboard reinforced with aligned fibre bundles applied to one surface of the panel. For this purpose, mechanically processed (decorticated) and un-processed hemp fibre bundles, obtained from retted and un-retted hemp stems, were utilised. The results clearly show the impact of fibre reinforcement in both materials. Epoxy composites reinforced with processed hemp exhibited 3.3 times greater tensile strength when compared to the un-reinforced polymer, while for the particleboards, the bending strength obtained in those reinforced with processed hemp was 1.7 times greater than the un-reinforced particleboards. Moreover, whether the fibre bundles were processed or un-processed also affected the mechanical performance, especially in the epoxy composites. For example, the un-processed fibre-reinforced epoxy composites exhibited 49% greater work of fracture than the composites reinforced with processed hemp. In the wood-based particleboards, however, the difference was not significant. Additionally, observations of the fracture zone of the specimens showed different failure characteristics depending on whether the composites were reinforced with processed or un-processed hemp. Both epoxy composites and wood-based particleboards reinforced with un-processed hemp exhibited fibre reinforcement apparently able to retain structural integrity after the composite’s failure. On the other hand, when processed hemp was used as reinforcement, fibre bundles showed a clear cut across the specimen, with the fibre-reinforcement mainly failing at the composite's fracture zone.


2019 ◽  
pp. 089270571986461
Author(s):  
Kubra Coskun ◽  
Aysenur Mutlu ◽  
Mehmet Dogan ◽  
Ebru Bozacı

The effects of enzymatic treatments on the properties of coir fiber-reinforced poly(lactic acid) (PLA) were not found in the literature. Accordingly, the effects of various enzymatic treatments on the mechanical performance of the coir fiber-reinforced PLA composites were investigated in the current study. Four different enzymes, namely lipase, lactase, pectinase, and cellulase, were used. The mechanical properties of the composites were determined by the tensile, flexural, impact tests, and dynamic mechanical analysis. According to the test results, the use of enzyme treated coir fibers affected the mechanical properties except for the flexural properties with different extents depending upon their type. The tensile strength increased with the treatments of lipase and lactase, while the treatments with pectinase and cellulase had no remarkable effect. The impact strength was improved with enzymatic treatments except for pectinase. All enzymatic treatments improved the elastic modulus below the glass transition temperature. In brief, enzymatic treatments improved the interfacial adhesion between coir fiber and PLA via the waxes and fatty acids removal and/or the increment in surface roughness.


2020 ◽  
Author(s):  
Sandrine Rosin-Paumier ◽  
Hossein Eslami ◽  
Farimah Masrouri

<p>The incorporation of heat exchangers into geostructures leads to changes in the temperature of the adjacent soil, which may affect its hydro-mechanical properties. In this study, mini-pressiometer tests were carried out in the vicinity of three experimental energy piles of 12 meters length and 0.52-meter diameter installed in saturated sandy soil. Tests were carried out in three locations and in two different depths (namely 3 and 4 meters in depth) before and after cyclic variations of their temperature. The pressuremeter parameters are the pressuremeter modulus EM, the limit pressure PL and the creep-pressure Pf. These parameters characterize the properties of the soils; some measurements were done close to the energy piles (1.25 meters from the center of the pile) using a mini-pressuremeter cell (380 mm in height and 28 mm in diameter). The comparison of the results before and after the four warming-cooling cycles (8° to 19° C) showed a thin thickening of the material at 3 meters depth. These results are coherent with in-lab measurements and with the results of the pile loading tests carried out later on the same site.</p>


2014 ◽  
Vol 20 (6) ◽  
pp. 1826-1834
Author(s):  
Enne Faber ◽  
Willem P. Vellinga ◽  
Jeff T.M. De Hosson

AbstractThis paper investigates the adhesive interface in a polymer/metal (polyethylene terephthalate/steel) laminate that is subjected to uniaxial strain. Cross-sections perpendicular to such interfaces were created with a focused ion beam and imaged with scanning electron microscopy during straining in the electron microscope. During in situ straining, glide steps formed by the steel caused traction at the interface and initiated crazes in the polyethylene terephthalate (PET). These crazes readily propagated along the free surface of the PET layer. Similar crazing has not been previously encountered in laminates that were pre-strained or in numerical calculations. The impact of focused ion beam treatments on mechanical properties of the polymer/metal laminate system was therefore investigated. It was found that mechanical properties such as toughness of PET are dramatically influenced by focused ion beam etching. It was also found that this change in mechanical properties has a different effect on the pre-strained and in situ strained samples.


Sign in / Sign up

Export Citation Format

Share Document