scholarly journals REVIEW OF PROPERTIES, COMPOSITION AND DEFECTS OF DIFFERENT GLASSES WITH POTENTIAL USE FOR GAS HYDROGEN STORAGE SYSTEMS

2021 ◽  
Vol 6 (3) ◽  
pp. 142-147
Author(s):  
Andrei RĂȚOI ◽  
Corneliu MUNTEANU ◽  
Bogdan ISTRATE ◽  
Dan ELIEZER

The article reviews the research findings available on different types of glasses that presents potential use for high pressure gas hydrogen storage systems. An overview of the mechanical properties of different glasses, the influence of main constituents and the impact of defects to the strength of glass was presented. As part of this research, it can be concluded that the glass gets a significant improvement of tensile strength by reducing its dimensions to fibre sizes or capillaries due to reduced probability of defects presence.

Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 817 ◽  
Author(s):  
Shin Won Kim ◽  
Joo Seong Sohn ◽  
Hyun Keun Kim ◽  
Youngjae Ryu ◽  
Sung Woon Cha

This study investigates the properties of a polymer–gas mixture formed through diffusion, based on the changes in the partial pressure and observed changes in the impact and tensile strengths owing to the gas dissolution. The high-pressure gas dissolves into a solid-state polymer through diffusion based on the difference in the partial pressure. This dissolved gas is present in the amorphous region within the polymeric material temporarily, which results in the polymer exhibiting different mechanical properties, while the gas remains dissolved in the polymer. In this study, the mechanical properties of amorphous polyethylene terephthalate (APET) specimens prepared by dissolving CO2 using a high-pressure vessel were investigated, and the resulting impact and tensile strengths were measured. These experiments showed that the increase in sorption rate of CO2 caused an increase in the impact strength. At 2.9% CO2 absorption, the impact strength of APET increased 956% compared to that of the reference specimen. Furthermore, the tensile strength decreased by up to 71.7% at 5.48% CO2 sorption; the stress–strain curves varied with the gas sorption rate. This phenomenon can be associated with the change in the volume caused by CO2 dissolution. When the APET absorbed more than 2.0% CO2 gas, sample volume increased. A decrease in the network density can occur when the volume is increased while maintaining constant mass. The CO2 gas in the polymer acted as a cushion in impact tests which have sorption rates above 2%. In addition to the reduction in the network density in the polymer chain, Van Der Waals forces are decreased causing a decrease in tensile strength only while CO2 is present in the APET. These observations only occur prior to CO2 desorption from the polymer.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 779
Author(s):  
Mohamed Gomah ◽  
Guichen Li ◽  
Salah Bader ◽  
Mohamed Elkarmoty ◽  
Mohamed Ismael

The awareness of the impact of high temperatures on rock properties is essential to the design of deep geotechnical applications. The purpose of this research is to assess the influence of heating and cooling treatments on the physical and mechanical properties of Egyptian granodiorite as a degrading factor. The samples were heated to various temperatures (200, 400, 600, and 800 °C) and then cooled at different rates, either slowly cooled in the oven and air or quickly cooled in water. The porosity, water absorption, P-wave velocity, tensile strength, failure mode, and associated microstructural alterations due to thermal effect have been studied. The study revealed that the granodiorite has a slight drop in tensile strength, up to 400 °C, for slow cooling routes and that most of the physical attributes are comparable to natural rock. Despite this, granodiorite thermal deterioration is substantially higher for quick cooling than for slow cooling. Between 400:600 °C is ‘the transitional stage’, where the physical and mechanical characteristics degraded exponentially for all cooling pathways. Independent of the cooling method, the granodiorite showed a ductile failure mode associated with reduced peak tensile strengths. Additionally, the microstructure altered from predominantly intergranular cracking to more trans-granular cracking at 600 °C. The integrity of the granodiorite structure was compromised at 800 °C, the physical parameters deteriorated, and the rock tensile strength was negligible. In this research, the temperatures of 400, 600, and 800 °C were remarked to be typical of three divergent phases of granodiorite mechanical and physical properties evolution. Furthermore, 400 °C could be considered as the threshold limit for Egyptian granodiorite physical and mechanical properties for typical thermal underground applications.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 94
Author(s):  
Petar Janjatovic ◽  
Olivera Eric Cekic ◽  
Leposava Sidjanin ◽  
Sebastian Balos ◽  
Miroslav Dramicanin ◽  
...  

Austempered ductile iron (ADI) is an advanced cast iron material that has a broad field of application and, among others, it is used in contact and for conveyance of fluids. However, it is noticed that in contact with some fluids, especially water, ADI material becomes brittle. The most significant decrease is established for the elongation. However, the influence of water and the cause of this phenomenon is still not fully understood. For that reason, in this paper, the influence of different water concentrations in ethyl alcohol on the mechanical properties of ADI materials was studied. The test was performed on two different types of ADI materials in 0.2, 4, 10, and 100 vol.% water concentration environments, and in dry condition. It was found that even the smallest concentration of water (0.2 vol.%) causes formation of the embrittled zone at fracture surface. However, not all mechanical properties were affected equally and not all water concentrations have been critical. The highest deterioration was established in the elongation, followed by the ultimate tensile strength, while the proof strength was affected least.


2015 ◽  
Vol 825-826 ◽  
pp. 369-376 ◽  
Author(s):  
Robert Prussak ◽  
Daniel Stefaniak ◽  
Christian Hühne ◽  
Michael Sinapius

This paper focuses on the reduction of process-related thermal residual stress in fiber metal laminates and its impact on the mechanical properties. Different modifications during fabrication of co-cure bonded steel/carbon epoxy composite hybrid structures were investigated. Specific examinations are conducted on UD-CFRP-Steel specimens, modifying temperature, pressure or using a thermal expansion clamp during manufacturing. The impact of these parameters is then measured on the deflection of asymmetrical specimens or due yield-strength measurements of symmetrical specimens. The tensile strength is recorded to investigate the effect of thermal residual stress on the mechanical properties. Impact tests are performed to determine the influence on resulting damage areas at specific impact energies. The experiments revealed that the investigated modifications during processing of UD-CFRP-Steel specimens can significantly lower the thermal residual stress and thereby improve the tensile strength.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Haoliang Huang ◽  
Guang Ye

In this research, self-healing due to further hydration of unhydrated cement particles is taken as an example for investigating the effects of capsules on the self-healing efficiency and mechanical properties of cementitious materials. The efficiency of supply of water by using capsules as a function of capsule dosages and sizes was determined numerically. By knowing the amount of water supplied via capsules, the efficiency of self-healing due to further hydration of unhydrated cement was quantified. In addition, the impact of capsules on mechanical properties was investigated numerically. The amount of released water increases with the dosage of capsules at different slops as the size of capsules varies. Concerning the best efficiency of self-healing, the optimizing size of capsules is 6.5 mm for capsule dosages of 3%, 5%, and 7%, respectively. Both elastic modulus and tensile strength of cementitious materials decrease with the increase of capsule. The decreasing tendency of tensile strength is larger than that of elastic modulus. However, it was found that the increase of positive effect (the capacity of inducing self-healing) of capsules is larger than that of negative effects (decreasing mechanical properties) when the dosage of capsules increases.


2020 ◽  
Vol 13 (6) ◽  
pp. 686-696
Author(s):  
Frank Mi-Way Ni ◽  
Abimbola Grace Oyeyi ◽  
Susan Tighe

AbstractProtecting the pavement subgrade to increase the service life of road pavements is an aspect currently being explored. Several alternative pavement subbase materials are being considered, including Lightweight Cellular Concrete (LCC). Due to its lower weight, LCC incorporating industrial by-product, making it sustainable, and ease of use amongst other benefits, is seen as a potential candidate. This paper reports reviewing the potential application of LCC within the pavement structure with a specific application as a subbase. It examines the various properties such as modulus of elasticity, compressive and tensile strength, Water absorption, and freeze-thaw resistance necessary for pavement application. It also assesses its use in the field in Canada considering the design methods utilized. Some limitations and gaps for LCC application in pavements are also established and recommendations on how to further its use and performance. This review concludes that LCC possesses potential as a pavement subbase alternative; however, other mechanical properties like LCC’s fatigue life is essential. A comparative field study is also recommended to monitor actual performance and various factors on performance.


2022 ◽  
Vol 46 ◽  
pp. 103761
Author(s):  
Jianjun Ye ◽  
Zhenhua Zhao ◽  
Junxu Cui ◽  
Zhengli Hua ◽  
Wenzhu Peng ◽  
...  

2013 ◽  
Vol 465-466 ◽  
pp. 962-966 ◽  
Author(s):  
Mohd Pahmi bin Saiman ◽  
Mohd Saidin Bin Wahab ◽  
Mat Uzir Wahit

To produce a good quality of dry fabric for reinforced material in a natural-based polymer composite, yarn linear density should be in consideration. A woven kenaf dry fabric with three different linear densities of 276tex, 413.4tex and 759tex were produced. The fabrics with different linear densities were been optimize with the assistance of WiseTex software. The optimized dry fabrics were infused with unsaturated polyester to produce composite panel using vacuum infusion process. The composites properties were tested on the tensile strength, flexural strength and the impact strength. The result shows that the mechanical properties of the composite increased when the yarn linear densities increased.


2021 ◽  
Vol 4 ◽  
pp. 121-126
Author(s):  
Rezza Ruzuqi ◽  
Victor Danny Waas

Composite material is a material that has a multi-phase system composed of reinforcing materials and matrix materials. Causes the composite materials to have advantages in various ways such as low density, high mechanical properties, performance comparable to metal, corrosion resistance, and easy to fabricate. In the marine and fisheries industry, composite materials made from fiber reinforcement, especially fiberglass, have proven to be very special and popular in boat construction because they have the advantage of being chemically inert (both applied in general and marine environments), light, strong, easy to print, and price competitiveness. Thus in this study, tensile and impact methods were used to determine the mechanical properties of fiberglass polymer composite materials. Each test is carried out on variations in the amount of fiberglass laminate CSM 300, CSM 450 and WR 600 and variations in weight percentage 99.5% -0.5%, 99% -1%, 98.5% -1, 5%, 98% -2% and 97.5%-2.5% have been used. The results showed that the greater the number of laminates, the greater the impact strength, which was 413,712 MPa, and the more the percentage of hardener, the greater the impact strength, which was 416,487 MPa. The results showed that the more laminate the tensile strength increased, which was 87.054 MPa, and the more the percentage of hardener, the lower the tensile strength, which was 73.921 MPa.


Sign in / Sign up

Export Citation Format

Share Document