scholarly journals Calculation of the Thermal Dynamic Performance of the Residential Buildings’ Walls

2019 ◽  
Vol 1 (1) ◽  
pp. 212-221
Author(s):  
Saša M. Kalinović ◽  
Jelena M. Djoković ◽  
Ružica R. Nikolić ◽  
Branislav Hadzima

Abstract Calculation of the thermal dynamic properties of the multi-layer wall isolation of residential buildings is presented in this paper. Taking into account that the final objective is to create a building with the highest energy efficiency ratio, i.e. with the lowest energy consumption, both for heating and cooling, it is necessary to realize the good thermal characteristics of the multi-layer wall. To obtain the optimal solution for the wall's structure, various wall structures with different thicknesses of the individual layers, were analyzed. Based on results, presented in this paper, one can conclude that for walls with the same total thickness, but various thicknesses of the individual layers, that constitute the complete wall structure, the differences appear in the delay of the change of the walls outside temperature. In that way, by varying those individual layers' thicknesses, one can obtain the optimal solution for the wall structure with the highest savings of energy.

Author(s):  
Saša M Kalinović ◽  
Jelena M Djoković

In this paper, analysis of dynamic thermal performance of multilayer insulation wall in residential buildings in Serbia is performed. Considering that the final goal is to build a residential structure with the highest level of efficiency, that is, with the lowest energy consumption for heating and cooling, it is necessary to determine good thermal characteristics of a multilayer wall. The first type of walls, which were analyzed had the same structure with different thicknesses of individual layers. The second type of analyzed walls had the same structure, but the thermo-insulating layers occupied different positions. The third type of walls had different structures, but the same total thickness. Based on the results presented in the paper, it can be concluded that in walls with similar structures, the same total thickness and different thicknesses of individual layers, there are differences in the external temperature variation shift. The position of the thermal insulation layer for the same wall structure does not significantly affect the change in temperature oscillation caused by the change in the outside temperature. Changing the wall structure, however, has significant influence on the thermal capacity. This analysis offers the possibility to choose the optimal solution for the wall structure with the highest energy efficiency.


2018 ◽  
Vol 10 (8) ◽  
pp. 2835 ◽  
Author(s):  
Jihui Yuan

The dynamic thermal characteristics of external wall structures are directly related to indoor thermal comfort and energy savings in buildings; they are also complicated and worth investigating. Thermal insulation in external wall structures has become a popular topic of investigation in the domain of building energy efficiency. This study aims to find the impact of insulation type and thickness on the dynamic thermal characteristics of external wall structures using a homogeneous multi-layer building external wall structure and three types of insulation materials that are widely used in Japan. The impact of insulation type and thickness on seven thermal characteristics of external walls, including thermal transmittance, decrement factor or amplitude attenuation, time lag, thermal admittance, time lead for thermal admittance, surface factor, and thermal capacity, was evaluated by numerical methods in this study. It was shown that insulation type and thickness would have a significant effect on thermal transmittance, decrement factor and time lag, but yield no significant change in thermal admittance, time lead for thermal admittance, surface factor, and the thermal capacity of external wall structures.


2008 ◽  
Vol 38 (01) ◽  
pp. 231-257 ◽  
Author(s):  
Holger Kraft ◽  
Mogens Steffensen

Personal financial decision making plays an important role in modern finance. Decision problems about consumption and insurance are in this article modelled in a continuous-time multi-state Markovian framework. The optimal solution is derived and studied. The model, the problem, and its solution are exemplified by two special cases: In one model the individual takes optimal positions against the risk of dying; in another model the individual takes optimal positions against the risk of losing income as a consequence of disability or unemployment.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 715
Author(s):  
Cristina Andrade ◽  
Sandra Mourato ◽  
João Ramos

Climate change is expected to influence cooling and heating energy demand of residential buildings and affect overall thermal comfort. Towards this end, the heating (HDD) and cooling (CDD) degree-days along with HDD + CDD were computed from an ensemble of seven high-resolution bias-corrected simulations attained from EURO-CORDEX under two Representative Concentration Pathways (RCP4.5 and RCP8.5). These three indicators were analyzed for 1971–2000 (from E-OBS) and 2011–2040, and 2041–2070, under both RCPs. Results predict a decrease in HDDs most significant under RCP8.5. Conversely, it is projected an increase of CDD values for both scenarios. The decrease in HDDs is projected to be higher than the increase in CDDs hinting to an increase in the energy demand to cool internal environments in Portugal. Statistically significant linear CDD trends were only found for 2041–2070 under RCP4.5. Towards 2070, higher(lower) CDD (HDD and HDD + CDD) anomaly amplitudes are depicted, mainly under RCP8.5. Within the five NUTS II


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3876
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Aiman Albatayneh ◽  
Patrick Dutournie ◽  
...  

Since buildings are one of the major contributors to global warming, efforts should be intensified to make them more energy-efficient, particularly existing buildings. This research intends to analyze the energy savings from a suggested retrofitting program using energy simulation for typical existing residential buildings. For the assessment of the energy retrofitting program using computer simulation, the most commonly utilized residential building types were selected. The energy consumption of those selected residential buildings was assessed, and a baseline for evaluating energy retrofitting was established. Three levels of retrofitting programs were implemented. These levels were ordered by cost, with the first level being the least costly and the third level is the most expensive. The simulation models were created for two different types of buildings in three different climatic zones in Palestine. The findings suggest that water heating, space heating, space cooling, and electric lighting are the highest energy consumers in ordinary houses. Level one measures resulted in a 19–24 percent decrease in energy consumption due to reduced heating and cooling loads. The use of a combination of levels one and two resulted in a decrease of energy consumption for heating, cooling, and lighting by 50–57%. The use of the three levels resulted in a decrease of 71–80% in total energy usage for heating, cooling, lighting, water heating, and air conditioning.


2021 ◽  
Vol 13 (12) ◽  
pp. 6753
Author(s):  
Moiz Masood Syed ◽  
Gregory M. Morrison

As the population of urban areas continues to grow, and construction of multi-unit developments surges in response, building energy use demand has increased accordingly and solutions are needed to offset electricity used from the grid. Renewable energy systems in the form of microgrids, and grid-connected solar PV-storage are considered primary solutions for powering residential developments. The primary objectives for commissioning such systems include significant electricity cost reductions and carbon emissions abatement. Despite the proliferation of renewables, the uptake of solar and battery storage systems in communities and multi-residential buildings are less researched in the literature, and many uncertainties remain in terms of providing an optimal solution. This literature review uses the rapid review technique, an industry and societal issue-based version of the systematic literature review, to identify the case for microgrids for multi-residential buildings and communities. The study describes the rapid review methodology in detail and discusses and examines the configurations and methodologies for microgrids.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-25
Author(s):  
Srinivasan Iyengar ◽  
Stephen Lee ◽  
David Irwin ◽  
Prashant Shenoy ◽  
Benjamin Weil

Buildings consume over 40% of the total energy in modern societies, and improving their energy efficiency can significantly reduce our energy footprint. In this article, we present WattScale, a data-driven approach to identify the least energy-efficient buildings from a large population of buildings in a city or a region. Unlike previous methods such as least-squares that use point estimates, WattScale uses Bayesian inference to capture the stochasticity in the daily energy usage by estimating the distribution of parameters that affect a building. Further, it compares them with similar homes in a given population. WattScale also incorporates a fault detection algorithm to identify the underlying causes of energy inefficiency. We validate our approach using ground truth data from different geographical locations, which showcases its applicability in various settings. WattScale has two execution modes—(i) individual and (ii) region-based, which we highlight using two case studies. For the individual execution mode, we present results from a city containing >10,000 buildings and show that more than half of the buildings are inefficient in one way or another indicating a significant potential from energy improvement measures. Additionally, we provide probable cause of inefficiency and find that 41%, 23.73%, and 0.51% homes have poor building envelope, heating, and cooling system faults, respectively. For the region-based execution mode, we show that WattScale can be extended to millions of homes in the U.S. due to the recent availability of representative energy datasets.


2011 ◽  
Vol 346 ◽  
pp. 379-384
Author(s):  
Shu Bo Xu ◽  
Yang Xi ◽  
Cai Nian Jing ◽  
Ke Ke Sun

The use of finite element theory and modal analysis theory, the structure of the machine static and dynamic performance analysis and prediction using optimal design method for optimization, the new machine to improve job performance, improve processing accuracy, shorten the development cycle and enhance the competitiveness of products is very important. Selected for three-dimensional CAD modeling software-UG NX4.0 and finite element analysis software-ANSYS to set up the structure of the beam finite element model, and then post on the overall structure of the static and dynamic characteristic analysis, on the basis of optimized static and dynamic performance is more superior double wall structure of the beam. And by changing the wall thickness and the thickness of the inner wall, as well as the reinforcement plate thickness overall sensitivity analysis shows that changes in these three parameters on the dynamic characteristics of post impact. Application of topology optimization methods, determine the optimal structure of the beam ultimately.


2012 ◽  
Vol 226-228 ◽  
pp. 1755-1759
Author(s):  
Hua Zhang ◽  
Fei Li ◽  
Yu Wei Gao

An improved passive confining pressure SHPB method was used to study the dynamic mechanical behaviors of asphalt concrete under quasi-one dimensional strain state. The effect of confining jacket material and its geometrical sizes on the confining pressure were discussed. The dynamic strength, dynamic modulus of elasticity and dynamic Poisson ratio of asphalt concrete were obtained. The influential rules of confining pressure on the dynamic properties were studied by comparing the stress-strain curves of asphalt concrete under different stress states. The study found that passive confining greater impact on the strength of asphalt concrete than elastic modulus and Poisson ratio, but the elastic modulus improved with the increase of confining pressure.


Author(s):  
Leon M. Headings ◽  
Gregory N. Washington

The goal of this research is to develop a framework for replacing conventional heating and cooling systems with distributed, continuously and electrically controlled, building-integrated thermoelectric (BITE) heat pumps. The coefficient of performance of thermoelectric heat pumps increases as the temperature difference across them decreases and as the amplitude of temperature oscillations decreases. As a result, this research examines how thermal insulation and mass elements can be integrated with thermoelectrics as part of active multi-layer structures in order to minimize net energy consumption. In order to develop BITE systems, an explicit finite volume model was developed to model the dynamic thermal response of active multi-layer wall structures subjected to arbitrary boundary conditions (interior and exterior temperatures and interior heat loads) and control algorithms. Using this numerical model, the effects of wall construction on net system performance were examined. These simulation results provide direction for the ongoing development of BITE systems.


Sign in / Sign up

Export Citation Format

Share Document