scholarly journals A Method for Improving the Accuracy of Natural Frequency Measurement Using In-the-loop Computing

2021 ◽  
Vol 21 (4) ◽  
pp. 93-98
Author(s):  
Adam Kotowski

Abstract The method presented in the paper is based on in-the-loop computing applied for impulse response to obtain a spectrum with a much higher frequency resolution than using FFT. Then, higher spectrum frequency resolution results in greater accuracy in estimation of natural frequencies. The frequency resolution of estimated spectrum in this method is completely independent of the length of impulse response and, by extension, the method eliminates the problem of spectral resolution limitation using FFT due to finite length of recorded signals. This fact is very useful and is the main advantage of the proposed method. The results of the method have been shown and compared in quantitative terms to natural frequencies estimated using classical FFT with zero-padding as reference method.

2012 ◽  
Vol 134 (3) ◽  
Author(s):  
Matthew Lamb ◽  
Vincent Rouillard

It is sometimes necessary to determine the manner in which materials and structures deteriorate with respect to time when subjected to sustained random dynamic loads. In such cases a system’s fatigue characteristics can be obtained by continuously monitoring its modal parameters. This allows for any structural deterioration, often manifested as a loss in stiffness, to be detected. Many common structural integrity assessment techniques make use of Fourier analysis for modal parameter extraction. For continual modal parameter extraction, the Fourier transform requires that a compromise be made between the accuracy of the estimates and how frequently they can be obtained. The limitations brought forth by this compromise can be significantly reduced by selecting suitable values for the analysis parameters, mainly subrecord length and number of averages. Further improvements may also be possible by making use of spectral enhancement techniques, specifically overlapped averaging and zero padding. This paper uses the statistical analysis of results obtained from numerous physical and numerical experiments to evaluate the influence of the analysis parameters and spectral enhancement techniques on modal estimates obtained from limited data sets. This evaluation will assist analysts in selecting the most suitable inputs for parameter extraction purposes. The results presented in this paper show that when using the Fourier transform to extract modal characteristics, any variation in the parameters used for analysis can have a significant influence on the extraction of natural frequency estimates from systems subjected to random excitation. It was found that for records containing up to 10% noise, subrecord length; hence spectral resolution, has a more pronounced influence on the accuracy of modal estimates than the level of spectral averaging; therefore spectral uncertainty. It was also found that while zero padding may not increase the actual spectral resolution, it does allow for improved natural frequency estimates with the introduction of interpolated estimates at the nondescribed frequencies. Finally, it was found that for modal parameter extraction purposes (in this case natural frequency), increased amounts of overlapped averaging can significantly reduce the variance of the estimates obtained. This is particularly useful as it allows for increased precision without compromising temporal resolution.


1995 ◽  
Vol 14 (3) ◽  
pp. 119-133 ◽  
Author(s):  
John M Randall ◽  
Chaoying Peng

The discomfort to animals arising from vibration during transport is likely to be greatest at their natural resonant frequency. This frequency can be measured without compromising animal welfare by placing them on a simple beam support at each end which is caused to vibrate by a small impulse. The optimum beam to give stable and accurate results for this technique is evaluated using a two-degree-of-freedom model. Some design requirements are contradictory, for example sensitivity to the resolution of frequency measurement and the benefits of having a single system response. These problems are alleviated by specifying a unified accuracy at both of the system natural frequencies. In this case the natural frequency of the beam should be twice that of the animal and the modal mass of the beam should equal that of the animal.


2020 ◽  
Vol 27 (1) ◽  
pp. 216-225
Author(s):  
Buntheng Chhorn ◽  
WooYoung Jung

AbstractRecently, basalt fiber reinforced polymer (BFRP) is acknowledged as an outstanding material for the strengthening of existing concrete structure, especially it was being used in marine vehicles, aerospace, automotive and nuclear engineering. Most of the structures were subjected to severe dynamic loading during their service life that may induce vibration of the structures. However, free vibration studied on the basalt laminates composite plates with elliptical cut-out and correlation of natural frequency with buckling load has been very limited. Therefore, effects of the elliptical hole on the natural frequency of basalt/epoxy composite plates was performed in this study. Effects of stacking sequence (θ), elliptical hole inclination (ϕ), hole geometric ratio (a/b) and position of the elliptical hole were considered. The numerical modeling of free vibration analysis was based on the mechanical properties of BFRP obtained from the experiment. The natural frequencies as well as mode shapes of basalt laminates composite plates were numerically determined using the commercial program software (ABAQUS). Then, the determination of correlation of natural frequencies with buckling load was carried out. Results showed that elliptical hole inclination and fiber orientation angle induced the inverse proportion between natural frequency and buckling load.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 515 ◽  
Author(s):  
Long Zhao ◽  
Xinbo Huang ◽  
Ye Zhang ◽  
Yi Tian ◽  
Yu Zhao

In this paper, we present a vibration-based transmission tower structural health monitoring system consisting of two parts that identifies structural changes in towers. An accelerometer group realizes vibration response acquisition at different positions and reduces the risk of data loss by data compression technology. A solar cell provides the power supply. An analyser receives the data from the acceleration sensor group and calculates the transmission tower natural frequencies, and the change in the structure is determined based on natural frequencies. Then, the data are sent to the monitoring center. Furthermore, analysis of the vibration signal and the calculation method of natural frequencies are proposed. The response and natural frequencies of vibration at different wind speeds are analysed by time-domain signal, power spectral density (PSD), root mean square (RMS) and short-time Fouier transform (STFT). The natural frequency identification of the overall structure by the stochastic subspace identification (SSI) method reveals that the number of natural frequencies that can be calculated at different wind speeds is different, but the 2nd, 3rd and 4th natural frequencies can be excited. Finally, the system was tested on a 110 kV experimental transmission line. After 18 h of experimentation, the natural frequency of the overall structure of the transmission tower was determined before and after the tower leg was lifted. The results show that before and after the tower leg is lifted, the natural frequencies of each order exhibit obvious changes, and the differences in the average values can be used as the basis for judging the structural changes of the tower.


2011 ◽  
Vol 675-677 ◽  
pp. 477-480
Author(s):  
Dong Wei Shu

In this work analytical solutions are developed to study the free vibration of composite beams under axial loading. The beam with a single delamination is modeled as four interconnected Euler-Bernoulli beams using the delamination as their boundary. The continuity and the equilibrium conditions are satisfied between the adjoining beams. The studies show that the sizes and the locations of the delaminations significantly influence the natural frequencies and mode shapes of the beam. A monotonic relation between the natural frequency and the axial load is predicted.


2007 ◽  
Vol 353-358 ◽  
pp. 2285-2288
Author(s):  
Fei Wang ◽  
Xue Zeng Zhao

Triangular cantilevers are usually used as small force sensors in the transverse direction. Analyzing the effect of a crack on transverse vibration of a triangular cantilever will be of value to users and designers of cantilever deflection force sensors. We present a method for prediction of location and size of a crack in a triangular cantilever beam based on measurement of the natural frequencies in this paper. The crack is modeled as a rotational spring. The beam is treated as two triangular beams connected by a rotational spring at the crack location. Formulae for representing the relation between natural frequencies and the crack details are presented. To detect crack details from experiment results, the plots of the crack stiffness versus its location for any three natural modes can be obtained through the relation equation, and the point of intersection of the three curves gives the crack location. The crack size is then calculated using the relation between its stiffness and size. An example to demonstrate the validity and accuracy of the method is presented.


1977 ◽  
Vol 21 (3) ◽  
pp. 241-243 ◽  
Author(s):  
Clanton E. Mancill

The maximum entropy spectrum (MES), a sampled data power spectrum estimator, is applied to the enhancement of imagery obtained by synthetic array radar (SAR) imaging systems. MES offers better frequency resolution than conventional Fourier transform methods for certain signal classes. Since azimuth ground resolution in SAR systems is obtained by doppler frequency measurement of the radar return, the method is capable of enhancing the resolution of SAR maps. The principal signal requirement is adequate signal-to-noise ratio. The maximum entropy method has been tested using data obtained by the Hughes FLAMR radar system. The super-resolution capabilities of the method are demonstrated using FLAMR images of corner reflector arrays.


Author(s):  
Radka JÍROVÁ ◽  
Lubomír PEŠÍK

Vibroisolation systems of base desks for machine and testing facilities usually cannot effect efficient changing of their own frequencies according to operating conditions. Especially in the case of the automotive industry, the possibility of changing natural frequencies is very desirable. During varying operating conditions, the vibroisolation system needs to be regulated easily and quickly regarding the minimisation of dynamical forces transmitted to the ground and to ensure the stability of the testing process. This paper describes one of the options of tuning the base desk at a relatively short time and by sufficient change of own frequencies, which decides the dynamical behaviour of the whole system.


2007 ◽  
Vol 129 (6) ◽  
pp. 771-783 ◽  
Author(s):  
L. J. Jiang ◽  
J. Tang ◽  
K. W. Wang

The concept of using sensitivity-enhancing feedback control to improve the performance of frequency-shift-based structural damage identification has been recently explored. In previous studies, however, the feedback controller is designed to alter only the closed-loop eigenvalues, and the effect of closed-loop eigenvectors on the sensitivity enhancement performance has not been considered. In this research, it is shown that the sensitivity of the natural frequency shift to the damage in a multi-degree-of-freedom structure can be significantly influenced by the placement of both the eigenvalues and the eigenvectors. A constrained optimization problem is formulated to find the optimal assignment of both the closed-loop eigenvalues and eigenvectors, and then an optimal sensitivity-enhancing control is designed to achieve the desired closed-loop eigenstructure. Another advantage of this scheme is that the dataset of frequency measurement for damage identification can be enlarged by utilizing a series of closed-loop controls, which can be realized by activating different combinations of actuators in the system. Therefore, by using this proposed idea of multiple sensitivity-enhancing feedback controls, we can simultaneously address the two major limitations of frequency-shift-based damage identification: the low sensitivity of frequency shift to damage effects and the deficiency of frequency measurement data. A series of case studies are performed. It is demonstrated that the sensitivity of natural frequency shift to stiffness reduction can be significantly enhanced by using the designed sensitivity-enhancing feedback control, where the optimal placement of closed-loop eigenvectors plays a very important role. It is further verified that such sensitivity enhancement can directly benefit the damage identification accuracy and robustness.


2014 ◽  
Vol 564 ◽  
pp. 176-181
Author(s):  
S.T. Cheng ◽  
Nawal Aswan Abdul Jalil ◽  
Zamir A. Zulkefli

Vibration based technique have so far been focused on the identification of structural damage. However, not many studies have been conducted on the corrosion identification on pipes. The objective of this paper is to identify corrosion on pipes from vibration measurements. A hollow pipe, 500 mm in length with 63.5 mm in diameter was subjected to impact loading using an impact hammer to identify the natural frequency of the tube in two conditions i) without any corrosion and ii) with an induced localized 40 mm by 40 mm corrosion at the middle of the pipe. The shift of natural frequencies of the structures under free boundary conditions was examined for each node of excitation. The results showed that there is a shift in natural frequency of the pipe, between 3 and 4 Hz near to the corrosion area. It can suggested that that the impact vibration is capable of identifying of localized corrosion on a hollow tube.


Sign in / Sign up

Export Citation Format

Share Document