A short overview of vitamin C and selected cells of the immune system

Open Medicine ◽  
2011 ◽  
Vol 6 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Voja Pavlovic ◽  
M. Sarac

AbstractVitamin C (ascorbic acid) is an essential water-soluble nutrient that primarily exerts its effect on a host defense mechanisms and immune homeostasis and is the most important physiological antioxidant. Stable intake of vitamin C is essential for life in humans because the body does not synthesize it. Even the numerous studies have demonstrated that vitamin C supplementation stimulates the immune system, prevents DNA damage and significantly decreases the risk of a wide range of pathologies; the potential protective mechanisms are still largely unknown. This review summarizes the recently known facts about the role of vitamin C on the selected cells of the immune system and potential molecular mechanisms involved. Further, in this review, many new data about the positive effects of vitamin C on the immune system, potential toxicological effects, vitamin C supplementation in disease development, as well as some proposed mechanisms of vitamin C activity, are discussed.

2020 ◽  
Vol 11 (3) ◽  
pp. 395-396
Author(s):  
Ata Mahmoodpoor ◽  
Ali Shamekh ◽  
Sarvin Sanaie

SARS-CoV-2 causes acute respiratory distress syndrome. As any other newly emerged viral disease, there are no definite and curative treatments available for the COVID-19 till now, so almost all of the available therapies are designed to support the body against the virus. A healthy and complete nutrition provides the resources to the body’s defense mechanisms. Vitamin C supplementation has shown promising results in the activation of the innate immune system and may protect against respiratory viral diseases. Here, we briefly discuss about its role in critically ill patients, respiratory distress, sepsis and possible role in COVID-19.


2019 ◽  
Author(s):  
Changli Yang ◽  
Changyu Zhang ◽  
Jianyu Meng ◽  
Mengshuang Yao

Abstract Background: As an environmental stress factor, ultraviolet-B (UV-B) radiation directly affects the growth and development of Myzus persicae. Excessive UV-B stress leads to DNA, membrane lipid, and protein damage by the production of reactive oxygen species. However, M. persicae can adaptively respond to such environmental stress by activating the relevant mechanisms in the body. How M. persicae responds to UV-B stress and the molecular mechanisms underlying this adaptation remain unknown. Results: Here, we compared and analyzed transcriptome data for M. persicae following exposure to a light-emitting diode fluorescent lamp and UV-B radiation for 30 min. We identified 758 significant differentially expressed genes (DEGs) following exposure to UV-B stress, including 423 upregulated and 335 downregulated genes. In addition, enrichment analysis using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases illustrated that these DEGs are associated with antioxidation and detoxification, metabolic and protein turnover, immune response, and stress signal transduction. Simultaneously, these DEGs are closely related to the adaptability to UV-B stress.Conclusions: Our results suggest that UV-B stress is associated with a wide range of physiological effects in M. persicae. Our research can raise awareness of the mechanisms of insect responses to UV-B stress.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1342 ◽  
Author(s):  
Aaron Alford ◽  
Brenna Tucker ◽  
Veronika Kozlovskaya ◽  
Jun Chen ◽  
Nirzari Gupta ◽  
...  

Nucleic acid therapeutics have the potential to be the most effective disease treatment strategy due to their intrinsic precision and selectivity for coding highly specific biological processes. However, freely administered nucleic acids of any type are quickly destroyed or rendered inert by a host of defense mechanisms in the body. In this work, we address the challenge of using nucleic acids as drugs by preparing stimuli responsive poly(methacrylic acid)/poly(N-vinylpyrrolidone) (PMAA/PVPON)n multilayer hydrogel capsules loaded with ~7 kDa G-quadruplex DNA. The capsules are shown to release their DNA cargo on demand in response to both enzymatic and ultrasound (US)-triggered degradation. The unique structure adopted by the G-quadruplex is essential to its biological function and we show that the controlled release from the microcapsules preserves the basket conformation of the oligonucleotide used in our studies. We also show that the (PMAA/PVPON) multilayer hydrogel capsules can encapsulate and release ~450 kDa double stranded DNA. The encapsulation and release approaches for both oligonucleotides in multilayer hydrogel microcapsules developed here can be applied to create methodologies for new therapeutic strategies involving the controlled delivery of sensitive biomolecules. Our study provides a promising methodology for the design of effective carriers for DNA vaccines and medicines for a wide range of immunotherapies, cancer therapy and/or tissue regeneration therapies in the future.


2018 ◽  
Vol 3 (1) ◽  
pp. 1
Author(s):  
Lilis Rosmainar Tambunan ◽  
Widia Ningsih ◽  
Ni Putu Ayu ◽  
Haula Nanda

Vitamin C is one of the nutrients that act as antioxidants and effectively overcome free radicals that can damage cells or tissues, including protecting the lens from oxidative damage caused by radiation. Vitamin C is widely found in fruits, and vegetables, one of them in chili. Vitamin C in chili has a function as a good antioxidant for the body (able to increase the immune system absorbed by calcium in the body. This study aims to determine the levels of vitamin C contained in some types of chili using UV-Vis spectrophotometry method and conduct a preliminary test. The highest levels of vitamin C obtained by using spectrophotometric method at 200 nm wavelength were on red curly pepper (50 g/100 g) and followed by chili jablay orange-red (38 g/100 g), green cayenne (29 g/100 g), red pepper large (22 g/100 g), and large green chili (9 g/100 g). While based on preliminary test it was found that all chilies contain saponins, as well as only large red pepper (sample 1) and red curly pepper (sample 4) containing flavonoids Keywords: capsicum, chilly, spectrophotometry


2020 ◽  
Vol 48 (2) ◽  
pp. 507-516 ◽  
Author(s):  
Pierre Hardouin ◽  
Adeline Goulet

Bacteriophages (phages) and their preys are engaged in an evolutionary arms race driving the co-adaptation of their attack and defense mechanisms. In this context, phages have evolved diverse anti-CRISPR proteins to evade the bacterial CRISPR–Cas immune system, and propagate. Anti-CRISPR proteins do not share much resemblance with each other and with proteins of known function, which raises intriguing questions particularly relating to their modes of action. In recent years, there have been many structure–function studies shedding light on different CRISPR–Cas inhibition strategies. As the anti-CRISPR field of research is rapidly growing, it is opportune to review the current knowledge on these proteins, with particular emphasis on the molecular strategies deployed to inactivate distinct steps of CRISPR–Cas immunity. Anti-CRISPR proteins can be orthosteric or allosteric inhibitors of CRISPR–Cas machineries, as well as enzymes that irreversibly modify CRISPR–Cas components. This repertoire of CRISPR–Cas inhibition mechanisms will likely expand in the future, providing fundamental knowledge on phage–bacteria interactions and offering great perspectives for the development of biotechnological tools to fine-tune CRISPR–Cas-based gene edition.


2020 ◽  
Vol 21 (10) ◽  
pp. 3422
Author(s):  
Vincenzo Losappio ◽  
Rossana Franzin ◽  
Barbara Infante ◽  
Giulia Godeas ◽  
Loreto Gesualdo ◽  
...  

Hemodialysis (HD) patient are known to be susceptible to a wide range of early and long-term complication such as chronic inflammation, infections, malnutrition, and cardiovascular disease that significantly affect the incidence of mortality. A large gap between the number of people with end-stage kidney disease (ESKD) and patients who received kidney transplantation has been identified. Therefore, there is a huge need to explore the underlying pathophysiology of HD complications in order to provide treatment guidelines. The immunological dysregulation, involving both the innate and adaptive response, plays a crucial role during the HD sessions and in chronic, maintenance treatments. Innate immune system mediators include the dysfunction of neutrophils, monocytes, and natural killer (NK) cells with signaling mediated by NOD-like receptor P3 (NLRP3) and Toll-like receptor 4 (TLR4); in addition, there is a significant activation of the complement system that is mediated by dialysis membrane-surfaces. These effectors induce a persistent, systemic, pro-inflammatory, and pro-coagulant milieu that has been described as inflammaging. The adaptive response, the imbalance in the CD4+/CD8+ T cell ratio, and the reduction of Th2 and regulatory T cells, together with an altered interaction with B lymphocyte by CD40/CD40L, have been mainly implicated in immune system dysfunction. Altogether, these observations suggest that intervention targeting the immune system in HD patients could improve morbidity and mortality. The purpose of this review is to expand our understanding on the role of immune dysfunction in both innate and adaptive response in patients undergoing hemodialysis treatment.


2004 ◽  
pp. S17-S22 ◽  
Author(s):  
PJ Jenkins ◽  
SA Bustin

Cancer risk is determined by a combination of environmental factors and genetic predisposition. Recent evidence suggests that dietary and related factors such as physical activity and body size may influence cancer risk through their effects on the serum concentration of IGF-I and its binding proteins. The growth hormone (GH)/IGF-I axis is involved in both human development as well as the maintenance of normal function and homeostasis in most cells of the body. In addition to their classical role as endocrine hormones, its members regulate a wide range of biological functions such as cell proliferation, differentiation and apoptosis through paracrine and autocrine mechanisms. During cancer development this complex network regulating tissue homeostasis breaks down, with inappropriate expression of the GH/IGF-I axis making an important contribution. The increased understanding of the molecular mechanisms and signalling pathways regulated by the GH/IGF-I axis has started to provide significant insights into the aetiology, prevention and therapy for a number of common cancers.


2015 ◽  
Vol 16 (2) ◽  
pp. 157-161 ◽  
Author(s):  
Dragan M. Pavlović ◽  
Merdin Š. Markišić ◽  
Aleksandra M. Pavlović

Abstract Vitamins are necessary factors in human development and normal brain function. Vitamin C is a hydrosoluble compound that humans cannot produce; therefore, we are completely dependent on food intake for vitamin C. Ascorbic acid is an important antioxidative agent and is present in high concentrations in neurons and is also crucial for collagen synthesis throughout the body. Ascorbic acid has a role in modulating many essential neurotransmitters, enables neurogenesis in adult brain and protects cells against infection. While SVCT1 enables the absorption of vitamin C in the intestine, SVCT2 is primarily located in the brain. Ascorbate deficiency is classically expressed as scurvy, which is lethal if not treated. However, subclinical deficiencies are probably much more frequent. Potential fields of vitamin C therapy are in neurodegenerative, cerebrovascular and affective diseases, cancer, brain trauma and others. For example, there is some data on its positive effects in Alzheimer’s disease. Various dosing regimes are used, but ascorbate is safe, even in high doses for protracted periods. Better designed studies are needed to elucidate all of the potential therapeutic roles of vitamin C.


Author(s):  
Mary K Walingo ◽  

Vitamin C, also known as ascorbic acid, abounds in nature and is highly labile. It is a water-soluble vitamin that is lost in large amounts during food processing. It is a vitamin whose prescribed requirement across cultures is not uniform. For example , the prescribed requirement of vitamin C in Great Britain is 30mg/day, while in the U.S.A., it is 60mg/day and 100mg/day in Japan. These variations are unusual and point to the need for further research to establish the acceptable RDAs for diverse populations. The RDA for vitamin C should be more than the amount needed to prevent the occurrence of disease. Vitamin C plays significant functions in the body that enhance its role in the health status of the human body. The biochemical functions of vitamin C include: stimulation of certain enzymes, collagen biosynthesis, hormonal activation, antioxidant, detoxification of histamine, phagocytic functions of leukocytes, formation of nitrosamine, and proline hydroxylation amongst others. These functions are related to the health effects of vitamin C status in an individual. In human health, vitamin C has been associated with reduction of incidence of cancer, blood pressure, immunity, and drug metabolism and urinary hydroxyproline excretion, tissue regeneration. This vitamin is needed for the proper metabolism of drugs in the body through adequate hepatic mixed function oxidase system. Epidemiological data have revealed the preventive and curative role of vitamin C on certain disease conditions in the body though controversies still persist. Vitamin C is effective in protecting against oxidative damage in tissues and also suppresses formation of carcinogens like nitrosamines. There is an inverse relationship with blood pressure and both plasma vitamin C and Vitamin C. Vitamin C has a lowering effect on blood pressure, especially on systolic pressure more than a diastolic pressure. Low levels of plasma vitamin C are associated with stroke and with an increased risk of all cause mortality. Increased consumption of ascorbic acid raises serum ascorbic levels and could decrease the risk of death.


2020 ◽  
Vol 11 (2) ◽  
pp. 9044-9050

Vitamin C is an essential dietary supplement that plays a vital role in battling health conditions. The antioxidant has positive effects on the functioning of the body. The purpose of this study is to investigate the outcome of varying concentrations of Vitamin C on the hematological parameters of Swiss Albino mice. Four albino mice were separated and accommodated in similar caging conditions. Three of them were orally administered with 250mg/kg, 500mg/kg, and 1000mg/kg Vitamin C powder, along with their diet. The fourth one was kept as control, in order to provide a standard value for future comparison. After 30 days of administration of the Vitamin C, the red blood cell count, the white blood cell count, the hemoglobin concentration, the platelet cell count, and the packed cell volume of the blood samples were tested.


Sign in / Sign up

Export Citation Format

Share Document