scholarly journals Investigation on compressive behavior of Cu-35Ni-15Al alloy at high temperatures

2014 ◽  
Vol 32 (3) ◽  
pp. 341-349 ◽  
Author(s):  
Cong Li ◽  
Jian Chen ◽  
Wei Li ◽  
Yongle Hu ◽  
Yanjie Ren ◽  
...  

AbstractMicrostructures and mechanical properties of Cu-35Ni-15Al alloy in cast and porous states were studied by scanning electron microscopy and compression tests. The influence of porosity, deformation temperature and loading rate on mechanical properties of the two kinds of alloys was investigated. The results show that the as cast alloy and porous alloys have almost the same phase constitution: Cu rich phase, Ni rich phase and K intermetallics. The yield strength of porous alloys increases continuously with decreasing porosity, the relationship between porosity and yield stress follows Gibson-Ashby equation. With decreasing deformation temperature, the yield strength of as cast alloy and porous alloy increase. With the increase of loading rate, the yield strength of these alloys shows an increasing trend. After compression, the microstructure of as cast alloy is more uniform, and porous alloys are more prone to have localized deformations.

2018 ◽  
Vol 765 ◽  
pp. 149-154 ◽  
Author(s):  
Seung Min Oh ◽  
Sun Ig Hong

Microstructure and mechanical properties of cast and cold-rolled equitomic CoCrFeCuNi alloy in which Mn was substituted by Cu from Cantor alloy was studied. The separation into two solid solutions (Cr-Co-Fe rich and Cu-rich phases) were observed in CoCrFeCuNi. Coarsening and widening of interdendritic Cu-rich phase after homogenization was observed after homogenization, suggesting Cu-rich phase is thermodynamically stable. The compressive stress-strain curves of homogenized cast CoCrFeCuNi alloy exhibited the reasonably high strength and excellent deformability for the cast alloy. The yield strength increased up to 960MPa after cold rolling from 265MPa of the homogenized cast alloy. The significant increase of yield strength is thought to be associated with the alignment of Cu-rich second phase in addition to cold work dislocation storage after cold rolling.


2015 ◽  
Vol 33 (4) ◽  
pp. 887-893
Author(s):  
Cong Li ◽  
Jian Chen ◽  
Wei Li ◽  
Yanjie Ren ◽  
Jianjun He

AbstractThe preparation process of porous Cu35Ni15Cr alloy was studied in this paper. The effect of ball milling time and sintering temperature on the porosity of Cu35Ni15Cr alloy was identified. It was found that 18 h ball milling and 950 °C sintering are the most promising parameters for the preparation of porous Cu35Ni15Cr alloy. The products have a ~62 % porosity. The alloy consists of an α phase and β phase. The influence of deformation temperature and loading rate on the mechanical properties of Cu35Ni15Cr alloys was investigated. The results show that with decreasing deformation temperature, the yield strength and elastic modulus of the porous alloy increase. With the increase of loading rate, the yield strength of these alloys shows an increasing trend, but the elastic modulus is on a steady level.


2012 ◽  
Vol 217-219 ◽  
pp. 2304-2307 ◽  
Author(s):  
Qiang Wang ◽  
Zhi Min Zhang ◽  
Xing Zhang

Plane strain compression were carried out for as-cast and pre-strained AZ31 alloy specimens at 210~330°C. The influence of initial grain on strengthening effect was analyzed by means of metallographic examination and mechanical testing. The results indicate the recrystallized grain of Mg alloy is sensitive to initial grain. With the deformation temperature increasing, the ultimate tensible strength decreases for as-cast and pre-strained alloy. With the deformation degree increasing, the tensile strength presents an increasing trend for as-cast alloy, but the tensile strength decreases on the whole for pre-strained alloy. The tensile strength increments of ~50% can be achieved under appropriate processing conditions.


2004 ◽  
Vol 19 (5) ◽  
pp. 1531-1538 ◽  
Author(s):  
Guangyin Yuan ◽  
Kenji Amiya ◽  
Hidemi Kato ◽  
Akihisa Inoue

The structure and mechanical properties of Mg–Zn–Al–Y base cast alloys containing an icosahedral quasicrystal phase (i-phase) as a main strengthening phase were investigated. Mg–8Zn–4Al–xY base bulk alloys containing the i-phase were prepared by casting into a copper mold at moderate cooling rates. The Y addition was effective for decreasing the size of the i-phase and the increasing the homogeneity of its dispersed state. The mechanical properties examined by compression tests at room temperature were much superior to those of a conventional AZ91 Mg alloy. The creep tests at elevated temperatures indicated a promising high temperature creep resistance of the quasicrystal-reinforced Mg–Zn–Al–Y cast alloy. The strengthening mechanism was also discussed.


Electrochem ◽  
2020 ◽  
Vol 1 (4) ◽  
pp. 388-393
Author(s):  
Yu-An Chien ◽  
Tso-Fu Mark Chang ◽  
Chun-Yi Chen ◽  
Daisuke Yamane ◽  
Hiroyuki Ito ◽  
...  

Strengthening of electrodeposited Au-based materials is achieved by co-electrodeposition with TiO2 nanoparticles dispersed in a sulfide-based gold electrolyte. TiO2 content in the composite film is adjusted by concentration of the TiO2 in the gold electrolyte. Effects of the TiO2 content on surface morphology, crystalline structure and microstructure of the composite film are investigated. Mechanical properties of the Au–TiO2 composite films are evaluated by micro-Vickers hardness and micro-compression tests. The hardness increases from 135 to 207 HV when the TiO2 content is increased from 0 to 2.72 wt%. Specimens used in the micro-compression test are micro-pillars fabricated from the composite film, and the yield strength reaches 0.84 GPa by incorporating 2.72 wt% TiO2 into the film.


2010 ◽  
Vol 152-153 ◽  
pp. 1313-1316
Author(s):  
Guo Jun Hu ◽  
Zhi Quan Hong

In this paper, the compression test on the bulk nanocrystalline sliver ( n Ag) with average grain size of 50 nm was made. The stress-strain curves under different strain rates were obtained by test. The test results show that the mechanical behavior of n Ag is rate-dependent, and the dynamic compress yield stress are about 1.5 times of that n Ag in static test condition; The effect of strain harding on n Ag is smaller than that of coarse-grained silver (c Ag) in plastic deformation; The relationship between the yield strength and the logarithm of strain rate is approximately linear.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Huamin Li ◽  
Huigui Li ◽  
Baobin Gao ◽  
Dongjie Jiang ◽  
Junfa Feng

To study the effect of loading rate on mechanical properties and acoustic emission characteristics of coal samples, collected from Sanjiaohe Colliery, the uniaxial compression tests are carried out under various levels of loading rates, including 0.001 mm/s, 0.002 mm/s, and 0.005 mm/s, respectively, using AE-win E1.86 acoustic emission instrument and RMT-150C rock mechanics test system. The results indicate that the loading rate has a strong impact on peak stress and peak strain of coal samples, but the effect of loading rate on elasticity modulus of coal samples is relatively small. When the loading rate increases from 0.001 mm/s to 0.002 mm/s, the peak stress increases from 22.67 MPa to 24.99 MPa, the incremental percentage is 10.23%, and under the same condition the peak strain increases from 0.006191 to 0.007411 and the incremental percentage is 19.71%. Similarly, when the loading rate increases from 0.002 mm/s to 0.005 mm/s, the peak stress increases from 24.99 MPa to 28.01 MPa, the incremental percentage is 12.08%, the peak strain increases from 0.007411 to 0.008203, and the incremental percentage is 10.69%. The relationship between acoustic emission and loading rate presents a positive correlation, and the negative correlation relation has been determined between acoustic emission cumulative counts and loading rate during the rupture process of coal samples.


2016 ◽  
Vol 849 ◽  
pp. 186-195 ◽  
Author(s):  
Jian Min Yu ◽  
Xu Bin Li ◽  
Zhi Min Zhang ◽  
Qiang Wang ◽  
Yao Jin Wu ◽  
...  

The multi-pass hot compression deformation behavior of the cast alloy with the composition of Mg-13Gd-4Y-2Zn-0.6Zr, was investigated, and the four-pass compression tests were conducted at the temperatures ranging from 350°C to 500°C and strain rate 0.01 s-1. The experimental results showed that the alloys incurred different degrees of softening by multipass deformation. The microstructure evolution for the deformed alloy was investigated, the influence of the microstructure on the hardness properties of the alloy discussed. The tests reveal that dynamic recrystallization is not the main softening mechanism for this alloy; rather, kink deformation refines the grains to achieve the observed softening effect. The hardness test curve showed that the hardness increased gradually with an increasing number of deformation passes. The improvement of the main mechanical properties related to the strengthening by the grain refinement. In multipass deformation, the misorientation of the kink belt gradually increased,and refined the grains. On the other hand, the grain size of the eutectic phase at the grain boundary decreased with increase of deformation passes. In addition, the mechanical properties were improved by the distribution dispersion of tiny cuboidal particles and acicular-like phases in the matrix.


2003 ◽  
Vol 806 ◽  
Author(s):  
Nicolle Radtke ◽  
Jürgen Eckert ◽  
Uta Kühn ◽  
Mihai Stoica ◽  
Ludwig Schultz

ABSTRACTWe report on the microstructure, the thermal stability and the mechanical properties of slowly cooled Zr-Nb-Cu-Ni-Al alloys with ductile bcc phase precipitates embedded in a glassy or nanocrystalline matrix. The samples were prepared in form of rods by injection casting into a copper mold. The phase formation and the microstructure of the composite material were investigated by X-ray diffraction, EDX analysis and scanning and transmission electron microscopy. The thermal stability was examined by differential scanning calorimetry and the mechanical behavior was investigated by compression tests under quasistatic loading at room temperature. The formation of bcc phase dendrites and a glassy or nanocrystalline matrix is strongly governed by the alloy composition and the actual cooling rate during solidification. Besides, changes in composition and cooling rate lead to different volume fraction and size of the bcc phase precipitates and, hence, to different values of yield strength, elastic and plastic strain. The samples with nanocrystalline matrix show a homogeneous distribution of the bcc phase precipitates over the whole cross-section and exhibit higher yield strength and plastic strain than the samples containing an amorphous matrix. Illustrated by the presented results we show the possibility of obtaining tailored mechanical properties by control of composition and solidification conditions.


2016 ◽  
Vol 715 ◽  
pp. 13-20
Author(s):  
Hidetoshi Kobayashi ◽  
Keitaro Horikawa ◽  
Kenichi Tanigaki ◽  
Kinya Ogawa

In order to clarify the relationship between the mechanical properties of synthetic quartz and the electromagnetic phenomena during its fracture, a series of uniaxial compression tests were carried out at quasi-static and dynamic rates. Not only the stress-strain curves but also the output of ferrite-core antenna located close to the specimens were measured in a shield box made of permalloy plates. Since the synthetic quartz has three characteristic axes, i.e. optical axis, electric axis and machine axis, the effect of loading direction on the mechanical properties and electromagnetic phenomena of quarts was also examined. The dynamic compressive strength was greater than those in static tests and there is strain-rate dependence in their strength of synthetic quartz. It was also found that there are not any remarkable differences due to the loading direction with respect to the intensity of electromagnetic waves measured in the dynamic compression tests, i.e. the electromagnetic phenomenon does not depend on the loading direction.


Sign in / Sign up

Export Citation Format

Share Document