scholarly journals In vitro salt tolerance induced secondary metabolites production in Abrus precatorius L.

2021 ◽  
pp. 115-120
Author(s):  
P. Deepa ◽  
K.P. Lafna Farshana

The white seeded Abrus precatorius L. is an important herbaceous medicinal plant with broad range of therapeutic effects. In the present study, the internode was selected as explant for in vitro salt tolerance analysis. For callus induction, MS medium with different concentrations and combinations of BAP, KIN and IBA were used. Better callus Fresh Weight and Dry Weight observed on MS medium supplemented with BAP 0.5mg/l and KIN 1mg/l. To detect the in vitro salt tolerance potential of calli, NaCl at different concentrations (0, 20, 40, 60, 80 and 100mM) were supplemented on MS+BAP0.5mg/l+KIN1mg/l of which 40mM NaCl induced better callus proliferation. The callus grown without NaCl stress showed the presence of eight phytochemical compounds in GC-MS analysis. While the NaCl stress tolerant callus exhibited the presence of seventeen phytochemical compounds. All these analyzed compounds were with antimicrobial / anti-oxidant properties. The present work will be very much helpful to ameliorate the production of medicinally significant compounds in the pharmaceutical industry.   

2017 ◽  
Vol 48 (4) ◽  
Author(s):  
Ibrahim & Ameen

An experiment was conducted to study the effect of sucrose, poly ethylene glycol (PEG) on hypocotyl induced callus of Moringa oleifera at the plant tissue culture lab.- College of Agriculture– University of Baghdad from February 2015 to May 2016. Sucrose concentrations were 30, 60, and 90, 120 g .L -1 and PEG 0, 25, 50 and 100 g .L -1 added to MS medium supplemented with 2.0 mg .L -1 of 2, 4-D and 0.1 mg .L -1 of NAA. MS medium supplemented with120 g .L -1 of sucrose gave the best amount of Zeatin, Quercetin and Kaempferol reached to 103.4, 1324.6 and 966.5 µg. g dry weight of callus-1 respectively. The concentrations of active compound increasing with adding PEG, MS medium supplemented with 100 g .L -1 PEG gave the highest value of Zeatin, Quercetin and Kaempferol which recorded 92.01, 3528.0 and 931.0 µg. g dry weight of callus-1 respectively. We found that we could increase the production of active material from callus that induced from explant by exposure the callus to several stress and then could separate the pure active material and used it as a drug in medicine.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Asmaa A.A. Abdel- Kareem ◽  
H.A. El- Shamy ◽  
A.K. Dawh ◽  
S.G. Gwiefel

The present work was conducted in order to investigate the effect of auxin type (2,4-D and NAA) and concentration (0.00, 0.25, 0.50, 1.00 and 2.00 mg/l) on Balanites aegyptiaca callus cultures growth and production of secondary metabolites. Obtained results demonstrated that supplementation MS medium with 2,4-D at 2.0 mg/l could enhanced and recorded the ultimate values of callus fresh weight, antioxidant activity (%), total flavonoids, total phenolic compounds and total saponins contents and yields of Balanites aegyptiaca L. callus.


HortScience ◽  
2009 ◽  
Vol 44 (1) ◽  
pp. 106-112 ◽  
Author(s):  
Alice Noemí Aranda-Peres ◽  
Lázaro Eustáquio Pereira Peres ◽  
Edson Namita Higashi ◽  
Adriana Pinheiro Martinelli

Many different species of Bromeliaceae are endangered and their conservation requires specific knowledge of their growth habits and propagation. In vitro culture of bromeliads is an important method for efficient clonal propagation and in vitro seed germination can be used to maintain genetic variability. The present work aims to evaluate the in vitro growth and nutrient concentration in leaves of the epiphyte bromeliads Vriesea friburguensis Mez, Vriesea hieroglyphica (Carrière) E. Morren, and Vriesea unilateralis Mez, which exhibit slow rates of growth in vivo and in vitro. Initially, we compared the endogenous mineral composition of bromeliad plantlets grown in half-strength Murashige and Skoog (MS) medium and the mineral composition considered adequate in the literature. This approach suggested that calcium (Ca) is a critical nutrient and this was considered for new media formulation. Three new culture media were defined in which the main changes to half-strength MS medium were an increase in Ca, magnesium, sulfur, copper, and chloride and a decrease in iron, maintaining the nitrate:ammonium rate at ≈2:1. The main difference among the three new media formulated was Ca concentration, which varied from 1.5 mm in half-strength MS to 3.0, 6.0, and 12 mm in M2, M3, and M4 media, respectively. Consistently, all three species exhibited significantly higher fresh and dry weight on M4, the newly defined medium with the highest level of Ca (12 mm). Leaf nitrogen, potassium, zinc, magnesium, and boron concentrations increased as Ca concentration in the medium increased from 1.5 to 12 mm.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 698d-698 ◽  
Author(s):  
Ching-yeh Hu ◽  
Lee Wang ◽  
Bernard Wu

Embryo culture can by-pass yew (Taxus) seed dormancy and produce large population of seedlings to be screened for the anticancer drug, taxol, production. Immature linear embryos from seeds of T. baccata, T. brevifolia. T. cuspidata, and T. media were dissected and cultured. B5 medium supported the best embryonic growth during the initial two week's culture for T. cuspidata and T. baccata. T. brevifolia grew faster on MS medium. Weak embryo dormancy was encountered in T. brevifolia and T. cuspidata from the mature seeds but not from the immature ones. No embryonic growth had been observed in T. media dissected from mature seeds due to strong dormancy. Developing embryos were subsequently transferred to 1/2X B5 medium for germination. Rooting percentage in the mature seed derived T. brevifolia embryos increased from 12.5 to 63.6 when 30 μM GA3 was added to the initial medium. Several hundreds of seedlings of T. baccata. T. brevifolia and T. cuspidata had been acclimatized to the greenhouse conditions. The taxol content of resultant T. cuspidata seedlings was 0.027% (dry weight), while that of T. brevifolia obtained from the wild twig was 0.030%.


HortScience ◽  
2009 ◽  
Vol 44 (3) ◽  
pp. 757-763 ◽  
Author(s):  
Meijun Zhang ◽  
Duanduan Zhao ◽  
Zengqiang Ma ◽  
Xuedong Li ◽  
Yulan Xiao

Momordica grosvenori plantlets were cultured in vitro for 26 d on sucrose- and hormone-free Murashige and Skoog (MS) medium with four levels of photosynthetic photon flux density (PPFD), namely 25, 50, 100, or 200 μmol·m−2·s−1, and a CO2 concentration of 1000 μmol·mol−1 in the culture room [i.e., photoautotrophic micropropagation (PA) treatments]. The control treatment was a photomixotrophic culture using MS medium containing sucrose and NAA with a CO2 concentration of 400 μmol·mol−1 in the culture room and a PPFD of 25 μmol·m−2·s−1. Based on the results, a second experiment was conducted to investigate the effects of α-naphthaleneacetic acid (NAA) and sucrose on callus formation. For this, plantlets were grown in the absence and presence of either NAA or sucrose. Compared with the control, the PA plantlet had a well-developed rooting system, better shoot, greater chlorophyll content, and higher electron transport rate and the ex vitro survival percentage was increased by 31%. Both sucrose and NAA stimulated callus formation on the shoot bases of control plantlets, whereas calluses did not form on the plantlets grown in sucrose- and hormone-free medium. The stronger light intensities increased the fresh and dry weight of plantlets. A PPFD of 100 μmol·m−2·s−1 was more suitable for the growth of M. grosvenori plantlets. Therefore, photoautotrophic plantlets grown at high light intensities would be better suited to the intense irradiance found in sunlight.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2544
Author(s):  
Sami Hannachi ◽  
Stefaan Werbrouck ◽  
Insaf Bahrini ◽  
Abdelmuhsin Abdelgadir ◽  
Hira Affan Siddiqui

Previously, an efficient regeneration protocol was established and applied to regenerate plants from calli lines that could grow on eggplant leaf explants after a stepwise in vitro selection for tolerance to salt stress. Plants were regenerated from calli lines that could tolerate up to 120 mM NaCl. For further in vitro and in vivo evaluation, four plants with a higher number of leaves and longer roots were selected from the 32 plants tested in vitro. The aim of this study was to confirm the stability of salt tolerance in the progeny of these four mutants (‘R18’, ‘R19’, ‘R23’ and ‘R30’). After three years of in vivo culture, we evaluated the impact of NaCl stress on agronomic, physiological and biochemical parameters compared to the parental control (‘P’). The regenerated and control plants were assessed under in vitro and in vivo conditions and were subjected to 0, 40, 80 and 160 mM of NaCl. Our results show significant variation in salinity tolerance among regenerated and control plants, indicating the superiority of four regenerants (‘R18’, ‘R19’, ‘R23’ and ‘R30’) when compared to the parental line (‘P’). In vitro germination kinetics and young seedling growth divided the lines into a sensitive and a tolerant group. ‘P’ tolerate only moderate salt stress, up to 40 mM NaCl, while the tolerance level of ‘R18’, ‘R19’, ‘R23’ and ‘R30’ was up to 80 mM NaCl. The quantum yield of PSII (ΦPSII) declined significantly in ‘P’ under salt stress. The photochemical quenching was reduced while nonphotochemical quenching rose in ‘P’ under salt stress. Interestingly, the regenerants (‘R18’, ‘R19’, ‘R23’ and ‘R30’) exhibited high apparent salt tolerance by maintaining quite stable Chl fluorescence parameters. Rising NaCl concentration led to a substantial increase in foliar proline, malondialdehyde and soluble carbohydrates accumulation in ‘P’. On the contrary, ‘R18’, ‘R19’, ‘R23’ and ‘R30’ exhibited a decline in soluble carbohydrates and a significant enhancement in starch under salinity conditions. The water status reflected by midday leaf water potential (ψl) and leaf osmotic potential (ψπ) was significantly affected in ‘P’ and was maintained a stable level in ‘R18’, ‘R19’, ‘R23’ and ‘R30’ under salt stress. The increase in foliar Na+ and Cl− content was more accentuated in parental plants than in regenerated plants. The leaf K+, Ca2+ and Mg2+ content reduction was more aggravated under salt stress in ‘P’. Under increased salt concentration, ‘R18’, ‘R19’, ‘R23’ and ‘R30’ associate lower foliar Na+ content with a higher plant tolerance index (PTI), thus maintaining a normal growth, while foliar Na+ accumulation was more pronounced in ‘P’, revealing their failure in maintaining normal growth under salinity stress. ‘R18’, ‘R19’, ‘R23’ and ‘R30’ showed an obvious salt tolerance by maintaining significantly high chlorophyll content. In ‘R18’, ‘R19’, ‘R23’ and ‘R30’, the enzyme scavenging machinery was more performant in the roots compared to the leaves. Salt stress led to a significant augmentation of catalase, ascorbate peroxidase and guaiacol peroxidase activities in the roots of ‘R18’, ‘R19’, ‘R23’ and ‘R30’. In contrast, enzyme activities were less enhanced in ‘P’, indicating lower efficiency to cope with oxidative stress than in ‘R18’, ‘R19’, ‘R23’ and ‘R30’. ACC deaminase activity was significantly higher in ‘R18’, ‘R19’, ‘R23’ and ‘R30’ than in ‘P’. The present study suggests that regenerated plants ‘R18’, ‘R19’, ‘R23’ and ‘R30’ showed an evident stability in tolerating salinity, which shows their potential to be adopted as interesting selected mutants, providing the desired salt tolerance trait in eggplant.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1035A-1035
Author(s):  
Devi Prasad V. Potluri ◽  
Nkechiyere Nwami

Two cultivars of sweetpotato, `Commensal' and `Salyboro', were subjected to salt stress using axillary bud cultures. The salt levels ranged from 0 to 10 g·L-1. After the initial experiments, levels of calcium in the medium were changed from 3 mm in the MS medium to 1.5, 6, and 12 mm. After 10 weeks of growth, plantlet shoot height, dry weight, number of nodes, levels of proline, soluble carbohydrate, and protein were measured. `Commensal' was tolerant to salt levels up to 4 g·L-1, but `Salyboro' was sensitive to concentrations of salt even at lower concentrations as evidenced by the growth and dry weight. Proline accumulation was higher in the shoot than in the root. The protein: carbohydrate ratios did not change much in `Commensal', but levels of carbohydrates increased in `Salyboro'. Reduction in calcium levels had a synergistic affect on salt-stressed cultivars. Enhanced levels of calcium reduced the inhibitory affects of salt stress. This was more pronounced in `Salyboro', which was susceptible. Proline levels were higher in plants subjected to salt stress and higher levels of calcium than controls, but lower than the plants subjected to salt stress. These and other metabolic changes suggest that calcium can reduce the adverse affects of salt stress in these two sweetpotato cultivars.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Luis Ângelo Macedo Santiago ◽  
Roberval Nascimento Moraes Neto ◽  
Ana Caroline Santos Ataíde ◽  
Dâmaris Cristina Sousa Carvalho Fonseca ◽  
Enio Fernandes Aragão Soares ◽  
...  

AbstractRheumatoid arthritis (RA) is a systemic inflammatory disease characterized by synovial inflammation leading to progressive joint erosion and, eventually, joint deformities. RA treatment includes anti-inflammatories, corticosteroids, synthetic disease-modifying antirheumatic drugs (DMARDs), and immunosuppressants. Drug administration is associated with adverse reactions, as gastrointestinal ulcers, cardiovascular complications, and opportunistic infections. Wherefore, different plant-derived phytochemical compounds are studied like new therapeutic approach to treatment of RA. Among the phytochemical compounds of plants for treatment of RA, flavonoids, alkaloids and saponins are related for present anti-inflammatory activity and act as physiological and metabolic regulators. They have low toxicity compared to other active plant compounds, so their therapeutic properties are widely studied. The intention of the review is to present an overview of the therapeutics of flavonoids, alkaloids, and saponins for RA. An extensive literature survey was undertaken through different online platforms:PubMed, SciELO, and Virtual Health Library databases, to identify phytochemical compounds used in RA treatment and the descriptors used were medicinal plants, herbal medicines, and rheumatoid arthritis. Seventy-five research and review articles were found to be apt for inclusion into the review. The present study summarizes the phytochemicals isolated from plants that have therapeutic effects on RA models, in vitro and in vivo. The studied substances exerted anti-inflammatory, chondroprotective, immunoregulatory, anti-angiogenic, and antioxidant activities and the most compounds possess good therapeutic properties, valuable for further research for treatment of RA.


2021 ◽  
Vol 19 (3) ◽  
pp. 481-493
Author(s):  
Tran Thi Thuong ◽  
Hoang Thanh Tung ◽  
Hoang Dac Khai ◽  
Vu Thi Hien ◽  
Vu Quoc Luan ◽  
...  

The growth of strawberry plantlets in the rooting stage on culture medium supplemented with silver nanoparticles (AgNPs) and the ethylene gas accumulation in plantlet culture bottles were investigated. In addition, different culture systems were first used to produce large-scale Strawberry plantlets. The results showed that shoots (3 cm) were cultured on MS medium supplemented with 0.02 mg/L NAA, 1 g/L activated charcoal, 30 g/L sucrose, 8 g/L agar and 0.5 mg/L AgNPs showed about 4 days earlier rooting formation and the plantlet growth such as plantlet height (5.60 cm), fresh weight (242.67 mg), dry weight (34,67 mg), number of roots/plantlet (6.67), root length (3.40 cm), SPAD (39.30 nmol/cm2) were higher than those in the control after 15 days of culture. Besides, the ethylene gas content in the culture bottle (0.06 ppm) in the 0.5 mg/L AgNPs treatment was lower than as compared to that in the control (0.15 ppm) after 15 days of culture. A shoot density (10 shoots) in 250 mL culture bottle with 40 mL of medium gave optimal growth than those in other treatments after 15 days of culture. Square plastic box culture system (length × width × height: 19 cm × 19 cm × 7 cm; 2.5 L in volume) containing 250 mL MS medium added to 0.5 mg/L AgNPs produced 100 vigorous plantlets; meanwhile, rectangular plastic box system (34 cm × 23 cm × 13 cm; 10 L in volume; 10 L in volume) produced 200 vigorous plantlets. Plantlets derived from 0.5 mg/L AgNPs treatment in the plastic box systems exhibited well acclimatization after 30 and 60 days of culture in the greenhouse.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250926
Author(s):  
Zhao Chen ◽  
Xin-long Cao ◽  
Jun-peng Niu

Alfalfa (Medicago sativa L.) is an important legume crop for forage, agriculture, and environment in the world. Ascorbic acid (AsA) plays positive roles in plants. However, its effects on germination and salt-tolerance of alfalfa are unknown. The effects of AsA applications on seed germination and seedling salt-tolerance of alfalfa were investigated. The results revealed that 0.1 and 1 mmol L-1 of exogenous AsA increased germination, amylase, and protease, as well as seedling length, fresh weight (FW), dry weight (DW), and endogenous AsA both in the shoots and roots, except that 1 mmol L-1 AsA reduced the activities of α-amylase, β-amylase and protease on day 3. However, 10 and 100 mmol L-1 AsA inhibited these parameters and even caused serious rot. It indicates that 0.1 mmol L-1 AsA has the optimal effects, whereas 100 mmol L-1 AsA has the worst impacts. Another part of the results showed that 0.1 mmol L-1 AsA not only enhanced stem elongation, FW and DW, but also increased chlorophyll and carotenoids both under non-stress and 150 mmol L-1 NaCl stress. Furthermore, 0.1 mmol L-1 AsA mitigated the damages of membrane permeability, malondialdehyde, and excessive reactive oxygen species (ROS) and ions both in the shoots and roots under 150 mmol L-1 NaCl stress. Hence, 0.1 mmol L-1 AsA improves growth and induces salt-tolerance by inhibiting excessive ROS, down-regulating the ion toxicity and up-regulating the antioxidant system. The principal component analysis included two main components both in the shoots and roots, and it explained the results well. In summary, the optimum concentration of 0.1 mmol L-1 AsA can be implemented to improve the seed germination and seedling growth of alfalfa under salt stress.


Sign in / Sign up

Export Citation Format

Share Document