scholarly journals Synthesis, physicochemical characterization and biological activity of synthesized Silver and Rajat Bhasma nanoparticles using Clerodendrum inerme

2021 ◽  
pp. 64-71
Author(s):  
Pallab Kar ◽  
Swarnendra Banerjee ◽  
Avhijit Chhetri ◽  
Arnab Sen

Bhasmais Metallo-medicine and made from metals and minerals. Rajatbhasma or Silver Bhasma belongs to a group of nanoparticles that have medicinal values and are used in Ayurveda as Drugs against various ailments. Clerodendrum inermea traditionally well-accepted plant is used extensivelyin ayurvedic therapeutic formulations, but till date no major steps have been carried out to validate the scientific relevance of synthesized nanoparticles from Rajatbhasma using C. inerme. Therefore, in the present study biosynthesized nanoparticles were characterized by UV–Vis spectroscopy, SEM, FESEM and EDX analysis whereas, a comparative study has also been made to check the antioxidant and antimicrobial activity of synthesized silver and rajatbhasma nanoparticle. The SEM and FESEM analysis revealed that the synthesized nanoparticles are well shaped and the average particle size ranges between 30–90 nm and 10-50 nm respectively. In the case of EDX analysis, the highest peak at ~3Kev in the case of synthesized silver and rajatbhasma nanoparticle supports the formation of silver nanoparticles. Subsequently, antioxidant and antimicrobial activities of the synthesized nanoparticles showed excellent results when compared to the standard. The obtained results may provide support in the field of therapeutics and drug delivery and might prove beneficial as a novel drug candidate against bacterial infection in the future.

Author(s):  
Nayana S. Baste ◽  
Ganesh. D. Basarkar

Natural polymers are the most accepted pharmaceutical excipients of formulator’s choice. The reasons for this are their cost effectiveness, biocompatibility and availability. In this research article natural gum was extracted from the seeds of Samanea saman by using ethanol as a solvent. The physicochemical characterization like Loss on drying, Total ash and Acid insoluble ash, Swelling Index, Viscosity and qualitative evaluation of purified gum was done. The percent yield of gum was found to 6% w/w and the swelling index was found to be 18.5. Total ash value (7.5% w/w) and Acid insoluble ash value (1.4%w/w) shows purity of gum whereas 3.2% w/w loss on drying suggest low moisture content of gum. Chemical evaluation shows presence of carbohydrate. X ray diffraction graph of gum shows crystalline nature. The gum has average particle size 45.0±0.32 to 50±0.18μm, and the surface texture of the particles was found to be rough and irregular by scanning Electron Microscopy. Mucoadhesive property of gum was evaluated by Swelling index, Mucoadhesive force, Shear stress measurement. For this study polymeric tablet of gum with concentrations like 10%, 30%, 50%, 70% and 90 %w/w were formulated and the results shows best mucoadhesive and swelling property. From the above result the gum may be used in the formulation of mucoadhesive dosage form.


2017 ◽  
Vol 263 ◽  
pp. 165-169
Author(s):  
Silvia Chowdhury ◽  
Faridah Yusof ◽  
Nadzril Sulaiman ◽  
Mohammad Omer Faruck

In this article, we have studied the process of silver nanoparticles (AgNPs) aggregation and to stop aggregation 0.3% Polyvinylpyrrolidone (PVP) was used. Aggregation study carried out via UV-vis spectroscopy and it is reported that the absorption spectrum of spherical silver nanoparticles were found a maximum peak at 420 nm wavelength. Furthermore, Transmission Electron Microscopy (TEM) were used to characterized the size and shape of AgNPs, where the average particle size is around 10 to 25 nm in diameter and the AgNPs shape is spherical. Next, Dynamic Light Scattering (DLS) were used, owing to observed size distribution and self-correlation of AgNPs.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Preetha Devaraj ◽  
Prachi Kumari ◽  
Chirom Aarti ◽  
Arun Renganathan

Cannonball (Couroupita guianensis) is a tree belonging to the family Lecythidaceae. Various parts of the tree have been reported to contain oils, keto steroids, glycosides, couroupitine, indirubin, isatin, and phenolic substances. We report here the synthesis of silver nanoparticles (AgNPs) using cannonball leaves. Green synthesized nanoparticles have been characterized by UV-Vis spectroscopy, SEM, TEM, and FTIR. Cannonball leaf broth as a reducing agent converts silver ions to AgNPs in a rapid and ecofriendly manner. The UV-Vis spectra gave surface plasmon resonance peak at 434 nm. TEM image shows well-dispersed silver nanoparticles with an average particle size of 28.4 nm. FTIR showed the structure and respective bands of the synthesized nanoparticles and the stretch of bonds. Green synthesized silver nanoparticles by cannonball leaf extract show cytotoxicity to human breast cancer cell line (MCF-7). Overall, this environmentally friendly method of biological silver nanoparticles production provides rates of synthesis faster than or comparable to those of chemical methods and can potentially be used in various human contacting areas such as cosmetics, foods, and medical applications.


In this study, by taking the advantage of the facile & controlled synthesis of furosemide derived gold nanoparticles (Fr-AuNps) for rapid and sensitive amperometric determination of dopamine (DP). The one-step synthesis of FrAuNps was carried out at room temperature without the use of strong reducing agents. The synthesized Fr-AuNps were studied by UV-Vis spectroscopy, and a strong absorption band for gold nanoparticles was observed at 520 nm. Transmission electron micrographs (TEM) revealed the average particle size below 100 nm. HRTEM showed excellent crystalline features as prepared gold nanoparticles. The electrochemical behavior of gold nanoparticles was examined by cyclic voltammetry (CV) which demonstrated the enhanced electrocatalytic kinetics activity towards the oxidation of dopamine. The presented dopamine biosensor exhibited a linear response for the dopamine in the range of 0.25 to 7 µM. The calculated the detection limit found to be 18.3 nM and limit of quantification 61.5 nM respectively. The proposed dopamine biosensor was successfully employed for the quantification of trace amount of dopamine from human serum and the obtained results are very satisfactory.


2021 ◽  
Vol 37 (2) ◽  
pp. 405-412
Author(s):  
Mohamed Habib Oueslati ◽  
Lotfi Ben Tahar ◽  
A. Khuzaim Alzahrani ◽  
Jamith Basha ◽  
Omar H. Abd Elkader

The present work reports a green biosynthesis of gold nano particles (EO-AuNPs) using an essential oil (EO) as a reducing agent of the Au(III) in HAuCl4. The EO was extracted by hydro-distillation from Diplotaxis acris flowers. A total of 16 compounds were detected from the EO oil by using GC–MS and 5-methylsulfanylpentanenitrile was identified as the major component (73.60 %). The biosynthesized EO-AuNPs were characterized performing UV–Vis, IR,XRD and TEM analyses.The UV-Vis revealed the typical features of surface plasmon resonance (SPR) of AuNPs at ~526 nm. The FT-IR spectrum of the biosynthesized nano particles exhibited the features of the nitrile (-C≡N) functional group indicating that the -C≡N-bearing EO components are likely acting as reducing and stabilizing agents for the formation of EO-AuNPs. The plausible scheme of EO-AuNPsformation was proposed.The TEM analysis showed that the EO- AuNPs were almost spherical in shape with an average particle size of 12.7 nm. In addition, the antimicrobial activity was carried out by diffusion of agar wells method. The results proved that the EO-AuNPs displayed a potential antimicrobial against gram negative strains, with a maximum zone of inhibition of 16 mm for E. coli at a concentration of 100 µg / ml.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2149 ◽  
Author(s):  
Zélia Alves ◽  
Cláudia Nunes ◽  
Paula Ferreira

The diversity of zinc oxide (ZnO) particles and derived composites applications is highly dependent on their structure, size, morphology, defect amounts, and/or presence of dopant molecules. In this work, ZnO nanostructures are grown in situ on graphene oxide (GO) sheets by an easily implementable solvothermal method with simultaneous reduction of GO. The effect of two zinc precursors (zinc acetate (ZA) and zinc acetate dihydrate (ZAD)), NaOH concentration (0.5, 1 or 2 M), and concentration (1 and 12.5 mg/mL) and pH (pH = 1, 4, 8, and 12) of GO suspension were evaluated. While the ZnO particle morphology shows to be precursor dependent, the average particle size length decreases with lower NaOH concentration, as well as with the addition of a higher basicity and concentration of GO suspension. A lowered band gap and a higher specific surface area are obtained from the ZnO composites with higher amounts of GO suspension. Otherwise, the low concentration and the higher pH of GO suspension induce more lattice defects on the ZnO crystal structure. The role of the different condition parameters on the ZnO nanostructures and their interaction with graphene sheets was observed to tune the ZnO–rGO nanofiller properties for photocatalytic and antimicrobial activities.


2020 ◽  
Vol 32 (9) ◽  
pp. 2130-2134
Author(s):  
B. VARUN KUMAR ◽  
Y. PARVEEN TAJ ◽  
K. HUSSAIN REDDY

Copper nanoparticles (CuNPs) have captivated amazing and renewable interest in recent years due to their fascinating features. In present investigation, CuNPs were produced by reducing copper sulphate with ascorbic acid (vitamin C) in aqueous medium without inert gas insulation at low temperature (80 ºC). In present synthetic procedure, a native vitamin C was applied as insulating agent to prevent oxidation of nascent CuNPs during the process and in storage. Triton X-100 was added that worked both as a size controller and as a capping agent. The CuNPs were characterized by UV-visible and FT-IR spectroscopies, powder X-ray diffraction (PXRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDX). Optical properties of Cu nanoparticles were explored using UV-vis spectroscopy. FT IR was employed to uncover the bonding between copper nanoparticles and Triton X-100. The CuNPs were discerned by PXRD and SEM-EDX Techniques. From the major diffraction peaks, the average particle size is determined using Debye-Scherer equation and it is found to be about 15 nm. It is hoped that the present results would pave a way for developing plans for the production of nascent CuNPs in the absence of inert gas insulation.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Asma Noshad ◽  
Mudassar Iqbal ◽  
Crispin Hetherington ◽  
Hassan Wahab

Bacterial canker of tomato caused by the bacterial pathogen Clavibacter michiganensis subsp. michiganensis (Cmm) is a major limiting factor for tomato production worldwide. Currently there exists no resistant variety of tomato to bacterial canker; only cultural and chemical controls are available. This study synthesized AgNPs (silver nanoparticles) via a green chemistry route and investigated their bactericidal potential against bacterial canker of tomato (BCT). AgNPs were prepared using mycellial aqueous extract of agriculturally beneficial fungi Pythium oligandrum. The formation of AgNPs was confirmed by using UV–Vis spectroscopy for the absorbance pattern while their morphology was investigated by the transmission electron microscopy (TEM). The X-ray diffraction profile for the biogenic AgNPs confirmed a crystalline structure with an average particle size of 12 nm. AgNPs treated seeds showed a normal germination rate with normal seedling growth. An in-vitro study found that the prepared AgNPs caused the maximum inhibition of the bacterial pathogen. In the greenhouse the introduction of AgNPs significantly prevents and inhibits the bacterial pathogen Cmm on tomato plants. These results suggest that this process is a strong candidate for industrial scale production of AgNPs. These particles act as an inhibitor and broad spectrum antibacterial agent against cmm, and hence offer a new and eco-friendly alternative in BCT control.


2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
DJafar Vatan Khah Dowlat Sara ◽  
Ahmad Rouhollahi ◽  
Seied Mahdi Pourmortazavi ◽  
Mojtaba Shamsipur

This work reports for the first time electrosynthesis of hexanethiol capped silver nanotriangles cores (Ag@C6SH NCs) by a rapid, clean, and simple Double Pulse Chronopotentiometric (DCP) method in nonaqueous media, using a Taguchi orthogonal arrayL8design to identify the optimized experimental conditions. It was found that the size and shape of the product could be tuned by the current density, electrolysis time, electrode distance, and amount of NaBH4% used. The Ag@C6SH NCs in different shapes and sizes (in the range of 30 to 44 nm as an average estimation) were synthesized, under different experimental conditions. Finally, the as-prepared nanoclusters electrosynthesized at optimized conditions were characterized by SEM, XRD, and UV-Vis spectroscopy. The average particle size of the triangular/pyramidal shape (Ag@C6SH NCs), obtained under optimized experimental conditions, was30.5±2.0 nm but the majority of nanoparticles in TC3SEM are so much finer.


2018 ◽  
Vol 150 ◽  
pp. 02003
Author(s):  
Tengku Anisa Tengku Sallehudin ◽  
Mazrul Nizam Abu Seman ◽  
Syed Mohd Saufi Tuan Chik

In this study, silver nanoparticles (AgNPs) were synthesized from tea leaves extract and its antimicrobial properties was tested on Escherichia coli (E. coli) using agar well method. The synthesized nanoparticles were characterized by using UV-vis spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD). The result from XRD analysis shows that the synthesized AgNPs are a face-centered cubic (fcc) structure with an average particle size of 28±15 nm AgNPs which confirmed by TEM. The synthesized AgNPs were then used in the preparation of thin film composite NF membrane via interfacial polymerization method. Separation performance of the produced membrane was evaluated in term of membrane permeability and solute rejection (vitamin B12, NaCl and Na2SO4 solutions). Based on the structural parameters (pore size, rp and Δx/Ak) values obtained from vitamin B12 test, all membranes can be considered as tight NF membranes. From the salts rejection test, membranes with the addition of AgNPs exhibited higher salt rejection compared to the neat membranes.


Sign in / Sign up

Export Citation Format

Share Document