Przeciwnowotworowe działanie składników propolisu. Cz. 1. Ester fenyloetylowy kwasu kawowego (CAPE)

2020 ◽  
Vol 21 (3) ◽  
Author(s):  
Bogdan Kędzia ◽  
Elżbieta Hołderna-Kędzia

The paper presents a review of the publications on the anticancerogenic activity of the biologically active component of propolis – caffeic acid phenethyl ester (CAPE). Literature data indicate numerous biological properties of CAPE, namely: antioxidant, anti-inflammatory, antiviral, immunostimulatory, anti-angiogenic and others. In numerous tests, both in vitro and in vivo, the significant activity of CAPE has been confirmed, including an action against HT-29 human colon adenoma cells, and five: human, murine and other tumor cell cultures. The authors also emphasize that CAPE supports the anticancerogenic effect of drugs, including doxorubicin and cisplatin, due to the reduction of cancer cell survival by 45% and 34%, respectively, compared to the above-mentioned drugs used alone. The conducted research indicates that the induction of apoptosis in cells, i.e. programmed cell death, can be mentioned among the main mechanisms of the anticancerogenic activity of CAPE.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 493
Author(s):  
Dimitrios T. Trafalis ◽  
Sofia Sagredou ◽  
Panayiotis Dalezis ◽  
Maria Voura ◽  
Stella Fountoulaki ◽  
...  

The fusion of 1,2,4-triazole and 1,3,4-thiadiazole rings results in a class of heterocycles compounds with an extensive range of pharmacological properties. A series of 1,2,4-triazolo[3,4-b]-1,2,4-thiadiazoles was synthesized and tested for its enzyme inhibition potential and anticancer activity. The results show that 1,2,4-triazolo[3,4-b]-1,2,4-thiadiazoles display potent anticancer properties in vitro against a panel of cancer cells and in vivo efficacy in HT-29 human colon tumor xenograft in CB17 severe combined immunodeficient (SCID) mice. Preliminary mechanistic studies revealed that KA25 and KA39 exhibit time- and concentration-dependent inhibition of Akt Ser-473 phosphorylation. Molecular modeling experiments indicated that 1,2,4-triazolo[3,4-b]-1,2,4-thiadiazoles bind well to the ATP binding site in Akt1 and Akt2. The low acute toxicity combined with in vitro and in vivo anticancer activity render triazolo[3,4-b]thiadiazoles KA25, KA26, and KA39 promising cancer therapeutic agents.


Toxins ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 628
Author(s):  
Van Nguyen Tran ◽  
Jitka Viktorová ◽  
Tomáš Ruml

The determination of mycotoxins content in food is not sufficient for the prediction of their potential in vivo cytotoxicity because it does not reflect their bioavailability and mutual interactions within complex matrices, which may significantly alter the toxic effects. Moreover, many mycotoxins undergo biotransformation and metabolization during the intestinal absorption process. Biotransformation is predominantly the conversion of mycotoxins meditated by cytochrome P450 and other enzymes. This should transform the toxins to nontoxic metabolites but it may possibly result in unexpectedly high toxicity. Therefore, the verification of biotransformation and bioavailability provides valuable information to correctly interpret occurrence data and biomonitoring results. Among all of the methods available, the in vitro models using monolayer formed by epithelial cells from the human colon (Caco-2 cell) have been extensively used for evaluating the permeability, bioavailability, intestinal transport, and metabolism of toxic and biologically active compounds. Here, the strengths and limitations of both in vivo and in vitro techniques used to determine bioavailability are reviewed, along with current detailed data about biotransformation of mycotoxins. Furthermore, the molecular mechanism of mycotoxin effects is also discussed regarding the disorder of intestinal barrier integrity induced by mycotoxins.


Life Sciences ◽  
2000 ◽  
Vol 68 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Kamran Gharehbaghi ◽  
Thomas Szekeres ◽  
Joel A. Yalowitz ◽  
Monika Fritzer-Szekeres ◽  
Yves G. Pommier ◽  
...  

2020 ◽  
Vol 21 (2) ◽  
pp. 642
Author(s):  
Magdalena Milczarek ◽  
Michał Chodyński ◽  
Anita Pietraszek ◽  
Martyna Stachowicz-Suhs ◽  
Kaori Yasuda ◽  
...  

Experimental data indicate that low-calcemic vitamin D derivatives (VDDs) exhibit anticancer properties, both in vitro and in vivo. In our search for a vitamin D analog as potential anticancer agent, we investigated the influence of chirality in the side chain of the derivatives of 1,25-dihydroxyergocalciferol (1,25D2) on their activities. In this study, we synthesized modified analogs at the side chain and the A-ring, which differed from one another in their absolute configuration at C-24, namely (24S)- and (24R)-1,25-dihydroxy-19-nor-20a-homo-ergocalciferols (PRI-5105 and PRI-5106, respectively), and evaluated their activity. Unexpectedly, despite introducing double-point modifications, both analogs served as very good substrates for the vitamin D-hydroxylating enzyme. Irrespective of their absolute C-24 configuration, PRI-5105 and PRI-5106 showed relatively low resistance to CYP24A1-dependent metabolic deactivation. Additionally, both VDDs revealed a similar antiproliferative activity against HT-29 colorectal cancer cells which was higher than that of 1,25D3, the major biologically active metabolite of vitamin D. Furthermore, PRI-5105 and PRI-5106 significantly enhanced the cell growth-inhibitory activity of 5-fluorouracil on HT-29 cell line. In conclusion, although the two derivatives showed a relatively high anticancer potential, they exhibited undesired high metabolic conversion.


Author(s):  
C. B. Ranaweera ◽  
A. K. Chandana

Clitoria ternatea commonly known as Butterfly pea is a standard Ayurvedic medicinal plant used in many parts of south Asian countries. Traditional medicinal plants are a great alternative to find new treatments and for the development of novel antimicrobials to combat many diseases. In Ayurveda and traditional and folk medicine in several countries, decoction and extracts made from C. ternatea are recommended to be used for various medical treatments. C. ternatea extracts claimed to possess antibacterial, antiviral, and antifungal properties, which had been supported and validated by many in vitro and in vivo experiments. However, biologically active compound/s isolation and development novel compounds still remain in its infancy. Despite its enormous potential health benefits, only a single commercial product managed to reach industrial level production. C. ternatea cyclotide studies are also limited despite the fact that it the fastest known natural ligase discovered to date. These cyclotides are rapid peptide ligators and has been the focus of many recent studies on peptide ligation and cyclization for biotechnological applications. In this mini summary we have tried to point out innate unique biological properties of C. ternatea and suggested few future studies, more specifically on C. ternatea cyclotides development against bacterial heat shock proteins (Hsp 100) for novel antimicrobial discovery and development.


2020 ◽  
Vol 103 (2) ◽  
pp. 422-427
Author(s):  
Agata Święciło ◽  
Kamila Rybczyńska-Tkaczyk

Abstract Background: In addition to nutrients, plant raw materials for food production should also contain substances with beneficial biological properties, which unquestionably include antioxidant compounds. Among the numerous methods of determining the antioxidant properties of samples of plant material, biological methods that provide information about not only the in vivo antioxidant potential of samples but also their metabolism and bioavailability are increasingly valued. Objective: The aim of the study was to assess the antioxidant properties of extracts from large cranberry (Vaccinium macrocarpon) obtained from different producers. Methods: Biologically active compounds were extracted from cranberry fruits using water alone and ethyl alcohol–water in proportions of 1+1 and 4+1 (v/v) as solvents. The following were determined in the extracts: content of phenolic compounds and anthocyanins, total antioxidant capacity based on reduction of the ABTS+• [2,20-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid)] radical cation, and antioxidant properties as reflected by the growth of a Saccharomyces cerevisiae Δsod1 mutant in a liquid hypertonic environment. The growth parameters of this Δsod1 mutant, monitored by a method exploiting a color reaction with resazurin, reflected the antioxidant properties of the extracts. Results: The ethanol–water cranberry extracts showed higher content of polyphenols, anthocyanins, and total antioxidants expressed as Trolox equivalent, determined on the basis of ABTS+• reduction. Conclusions: The antioxidant properties determined by the bioassay did not respond strongly to the data obtained in the in vitro chemical and biochemical assays, because they were more closely associated with the batch of fruit than with the type of solvent used to extract phytochemicals.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 676
Author(s):  
Marie Millard ◽  
Solène Posty ◽  
Max Piffoux ◽  
Jordane Jasniewski ◽  
Henri-Pierre Lassalle ◽  
...  

Extracellular vesicles (EVs), derived from the cell, display a phospholipid bilayer membrane that protects the cargo molecules from degradation and contributes to increasing their stability in the bloodstream and tumor targeting. EVs are interesting in regard to the delivery of photosensitizers (PSs) used in the photodynamic therapy (PDT), as they allow us to overcome the limitations observed with liposomes. In fact, liposomal formulation of meta-tetra(hydroxyphenyl)chlorin (mTHPC) (Foslip®), one of the most potent clinically approved PSs, is rapidly destroyed in circulation, thus decreasing in vivo PDT efficacy. mTHPC-EV uptake was evaluated in vitro in a 3D human colon HT-29 microtumor and in vivo study was performed in HT-29 xenografted mice. The obtained data were compared with Foslip®. After intravenous injection of the mTHPC formulations, biodistribution, pharmacokinetics and PDT-induced tumor regrowth were evaluated. In a 3D model of cells, mTHPC-EV uptake featured a deeper penetration after 24h incubation compared to liposomal mTHPC. In vivo results showed a considerable improvement of 33% tumor cure with PDT treatment applied 24h after injection, while 0% was observed after Foslip®/PDT. Moreover, 47 days were required to obtain ten times the initial tumor volume after mTHPC-EVs/PDT compared to 30 days for liposomal mTHPC. In conclusion, compared to Foslip®, mTHPC-EVs improved mTHPC biodistribution and PDT efficacy in vivo. We deduced that a major determinant factor for the improved in vivo PDT efficacy is the deep mTHPC intratumor penetration.


Author(s):  
Xiao Zhang ◽  
Yin-Lin Ge ◽  
Run-Hua Tian

AbstractWe investigated the effects of RNA interference-mediated silencing of the c-myc gene on celluar proliferation and apoptosis in human colon cancer HT-29 cells in vitro and in vivo. A small interfering RNA (siRNA) targeting c-myc was designed, the DNA template was synthesized, and the siRNA was obtained by in vitro transcription. After siRNA transfection into HT-29 and human neuroblastoma IMR-32 cells with Lipofectamine 2000™, the proliferation of the HT-29 and IMR-32 cells was assessed via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) colorimetry, and Hoechst 33258 staining was used to observe cell apoptosis. Following gene transfer to HT-29 cells, the expression of c-myc mRNA was examined via reverse transcription polymerase chain reaction, and the level of the protein via Western blot assay. Growth curves were constructed and in vivo experiments were performed on nude mice to assess the effects of c-myc silencing on tumor growth. The c-myc expression in the tumor tissue was measured by reverse transcription polymerase chain reaction and subsequently by immunohistochemistry. Our paper demonstrates that the delivery of siRNA directed against c-myc not only efficiently down-regulated the expression of c-myc, inhibited the proliferation of HT-29 cells and induced apoptosis in vitro, but also suppressed the growth of colon cancer cells in vivo.


2021 ◽  
Vol 37 (3) ◽  
pp. 3-10
Author(s):  
L.I. Nikolaeva

Bifidobacteria occupy a special place among various representatives of normal human microbiota. A wide range of probiotic preparations has been obtained based on cultivated strains of various bifidobacteria of the intestinal microbiota. A number of scientific publications noted the immunomodulatory, anticarcinogenic, and antiviral properties of bifidobacteria in vitro and in vivo. Recently, progress has been made in the research and application of this group of microorganisms in genetic engineering. It was established that vaccines against viral and bacterial infections and antitumor substances can be developed on the basis of various strains of bifidobacteria. Bifidobacteria can also be used as adjuvants for other vaccines, as well as delivery systems for biologically active substances to tumors. The prospects for the use of bifidobacteria for the development of recombinant vaccines are discussed. bifidobacteria, medical and biological properties, recombinant vaccines, drug delivery, adjuvants, plasmids This work was funded by the Epidemiology and Microbiology National Research Center. The authors are grateful to V. V. Kuprianov for valuable comments on the text of the review.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3091
Author(s):  
Przemysław Krawczyk ◽  
Beata Jędrzejewska ◽  
Klaudia Seklecka ◽  
Joanna Cytarska ◽  
Krzysztof Z. Łączkowski

Carbazole derivatives are the structural key of many biologically active substances, including naturally occurring and synthetic ones. Three novel (E)-2-(2-(4-9H-carbazol-9-yl)benzylidene)hydrazinyl)triazole dyes were synthesized with different numbers of chlorine substituents attached at different locations. The presented research has shown the influence of the number and position of attachment of chlorine substituents on electrochemical, optical, nonlinear, and biological properties. The study also included the analysis of the use of the presented derivatives as potential fluorescent probes for in vivo and in vitro tests. Quantum-chemical calculations complement the conducted experiments.


Sign in / Sign up

Export Citation Format

Share Document