Static and dynamic flow field development about a porous suction surface wing

Author(s):  
GREGORY ADDINGTON ◽  
SCOTT SCHRECK ◽  
MARVIN LUTTGES
Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1198
Author(s):  
Pauline H. M. Janssen ◽  
Sébastien Depaifve ◽  
Aurélien Neveu ◽  
Filip Francqui ◽  
Bastiaan H. J. Dickhoff

With the emergence of quality by design in the pharmaceutical industry, it becomes imperative to gain a deeper mechanistic understanding of factors impacting the flow of a formulation into tableting dies. Many flow characterization techniques are present, but so far only a few have shown to mimic the die filling process successfully. One of the challenges in mimicking the die filling process is the impact of rheological powder behavior as a result of differences in flow field in the feeding frame. In the current study, the rheological behavior was investigated for a wide range of excipients with a wide range of material properties. A new parameter for rheological behavior was introduced, which is a measure for the change in dynamic cohesive index upon changes in flow field. Particle size distribution was identified as a main contributing factor to the rheological behavior of powders. The presence of fines between larger particles turned out to reduce the rheological index, which the authors explain by improved particle separation at more dynamic flow fields. This study also revealed that obtained insights on rheological behavior can be used to optimize agitator settings in a tableting machine.


Author(s):  
Marcel Gottschall ◽  
Konrad Vogeler ◽  
Ronald Mailach

The article describes numerical investigations on the influence of four different endwall clearance topologies for variable stator vanes to secondary flow field development and the performance of high pressure compressors. The aim of this work is to quantify the characteristics of different clearance configurations depending on the penny-axis position and the penny diameter for a typical operating range. All clearance configurations were implemented to a linear cascade of modern stator profiles. The analysis was introduced using a relative clearance size of 1.3% chord at three stagger angles and two characteristic Reynolds numbers to model the operating range on aircraft engines. 3D numerical calculations were carried out to gain information about the flow field inside the cascade. They were compared with measurements of a 5-hole-probe as well as pressure tappings on the airfoil and the endwall. The CFD shows the clearance characteristics in good agreement with the measurements for the lower and the nominal stagger angle. Small gaps in the rear part of the vane have a beneficial effect on the flow field. In contrast, a clearance in the higher loaded front part of the vane always resulted in increased losses. Otherwise, the significant enhanced performance of a rear part gap, which was measured at the higher stagger angle, was not reflected by the CFD. The reduced mixing losses and the higher averaged flow turning even compared to a configuration without a clearance are not verified with the calculations. Large flow separations at the high stagger angle result in a two to four times higher underturning of the CFD in comparison to the experiments. The clearance effects to the characteristic radial loss distribution up to 40 % bladeheight also deviate from the measurements due to heavy mixing of clearance and reversed separated flow.


Author(s):  
Wenfeng Zhao ◽  
Bin Jiang ◽  
Qun Zheng

Hub corner is the high-loss area in the blade passages of turbo machinery. It is well known that the flow separation and vortex development in this area affects directly not only the energy losses and efficiency, but also the stability of axial compressors. Linear compressor cascades with partial gaps and trailing gaps which can blow away the corner separation by the pressure difference between the suction surface and pressure surface are numerically simulated in this paper. A proposed linear cascade model with gaps has been built. The steady flow field in a linear cascade with different length gaps is studied by numerical simulation of RANS with SST turbulence model and γ-Reθ transition model focusing on the streamline structure between the corner separation vortex and the gap leakage vortex, especially the interaction of the two vertical vortex. When the length of trailing edge gaps is enough (in this paper, the optimal length of the gap is 30% chord), the corner vortex basically disappears completely. At the same time, the mode of flow field changes from the closed separation to the open separation.


Author(s):  
Erman Çelik ◽  
İrfan Karagöz

Polymer electrolyte membrane fuel cells are carbon-free electrochemical energy conversion devices that are appropriate for use as a power source on vehicles and mobile devices emerging with their high energy density, lightweight structure, quick startup and lower operating temperature capabilities. However, they need more developments in the aspects of reactant distribution, less pressure drops, precisely balanced water content and heat management to achieve more reliable and higher overall cell performance. Flow field development is one of the most important fields of study to increase cell performance since it has decisive effects on performance parameters, including bipolar plate, and thus fuel cell weight. In this study, recent developments on conventional flow field designs to eliminate their weaknesses and innovative design approaches and flow field architectures are obtained from patent databases, and both numerical and experimental scientific studies. Fundamental designs that create differences are introduced, and their effects on the performance are discussed with regard to origin, objective, innovation strategy of design besides their strength and probable open development ways. As a result, significant enhancements and design strategies on flow field designs in polymer electrolyte membrane fuel cells are summarized systematically to guide prospective flow field development studies.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987774 ◽  
Author(s):  
Wei Wang ◽  
Qingdian Zhang ◽  
Tao Tang ◽  
Shengpeng Lu ◽  
Qi Yi ◽  
...  

A method of water injection to flow field using distributed holes on the suction surface of hydrofoil is presented in this article to control cavitation flow. Modified renormalization group k–ε turbulence model is coupled with full-cavitation model to calculate periodical cavitation patterns and the dynamic characteristics of the NACA66(MOD) hydrofoil. Water injection is found to be highly effective for cavitation suppression. The cavitation suppression effect of distributed regulation of jet holes and porosities along three-dimensional spanwise hydrofoil is also investigated. The appropriate porosities of single row spanwise jet holes and optimal jet position of double row jet holes are revealed for both cavitation suppression and good hydrodynamic performance. Double row jet holes setting in forward trapezoidal arrangement shows great potential for cavitation suppression and hydrodynamic performance. This research provides a method of water injection to flow field to actively control cavitation, which will facilitate development of engineering designs.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
David Demel ◽  
Mohsen Ferchichi ◽  
William D. E. Allan ◽  
Marouen Dghim

This work details an experimental investigation on the effects of the variation of flap gap and overlap sizes on the flow field in the wake of a wing-section equipped with a trailing edge Fowler flap. The airfoil was based on the NACA 0014-1.10 40/1.051 profile, and the flap was deployed with 40 deg deflection angle. Two-dimensional (2D) particle image velocimetry (PIV) measurements of the flow field in the vicinity of the main wing trailing edge and the flap region were performed for the optimal flap gap and overlap, as well as for flap gap and overlap increases of 2% and 4% chord beyond optimal, at angles of attack of 0 deg, 10 deg, and 12 deg. For all the configurations investigated, the flow over the flap was found to be fully stalled. At zero angle of attack, increasing the flap gap size was found to have minor effects on the flow field but increased flap overlap resulted in misalignment between the main wing boundary layer (BL) flow and the slot flow that forced the flow in the trailing edge region of the main wing to separate. When the angle of attack was increased to near stall conditions (at angle of attack of 12 deg), increasing the flap gap was found to energize and improve the flow in the trailing edge region of the main wing, whereas increased flap overlap further promoted flow separation on the main wing suction surface possibly steering the wing into stall.


Author(s):  
Seishiro Saito ◽  
Kazutoyo Yamada ◽  
Masato Furukawa ◽  
Keisuke Watanabe ◽  
Akinori Matsuoka ◽  
...  

This paper describes unsteady flow phenomena of a two-stage transonic axial compressor, especially the flow field in the first stator. The stator blade with highly loaded is likely to cause a flow separation on the hub, so-called hub-corner separation. The flow mechanism of the hub-corner separation in the first stator is investigated in detail using a large-scale detached eddy simulation (DES) conducted for its full-annulus and full-stage with approximately 4.5 hundred million computational cells. The detailed analysis of complicated flow fields in the compressor is supported by data mining techniques. The data mining techniques applied in the present study include vortex identification based on the critical point theory and topological analysis of the limiting streamline pattern. The simulation results show that the flow field in the hub-corner separation is dominated by a tornado-type separation vortex. In the time averaged flow field, the hub-corner separation vortex rolls up from the hub wall, which is generated by the interaction between the mainstream flow, the leakage flow from the front partial clearance and the secondary flow across the blade passage toward the stator blade suction side. The hub-corner separation vortex suffers a vortex breakdown near the mid chord, where the high loss region due to the hub-corner separation expands drastically. In the rear part of the stator passage, a high loss region is migrated radially outward by the induced velocity of the hub-corner separation vortex. The flow field in the stator is influenced by the upstream and downstream rotors, which makes it difficult to understand the unsteady effects. The unsteady flow fields are analyzed by applying the phase-locked ensemble averaging technique. It is found from the phase-locked flow fields that the wake interaction from the upstream rotor has more influence on the stator flow field than the shock wave interaction from the downstream rotor. In the unsteady flow field, a focal-type separation also emerges on the blade suction surface, but it is periodically swept away by the wake passing of the upstream rotor. The separation vortex on the hub wall connects with the one on the blade suction surface, forming an arch-like vortex.


2019 ◽  
Vol 7 (12) ◽  
pp. 465 ◽  
Author(s):  
Zhigao Dang ◽  
Zhaoyong Mao ◽  
Baowei Song ◽  
Wenlong Tian

Operating horizontal axis hydrokinetic turbine (HAHT) generates noise affecting the ocean environment adversely. Therefore, it is essential to determine the noise characteristics of such types of HAHT, as large-scale turbine sets would release more noise pollution to the ocean. Like other rotating machinery, the hydrodynamic noise generated by the rotating turbine has been known to be the most important noise source. In the present work, the transient turbulent flow field of the HAHT is obtained by incompressible large eddy simulation, thereafter, the Ffowcs Williams and Hawkings acoustic analogy formulation is carried out to predict the noise generated from the pressure fluctuations of the blade surface. The coefficient of power is compared with the experimental results, with a good agreement being achieved. It is seen from the pressure contours that the 80% span of the blade has the most severe pressure fluctuations, which concentrate on the region of leading the edge of the airfoil and the suction surface of the airfoil. Then, the noise characteristics around a single turbine are systematically studied, in accordance with the results of the flow field. The noise characteristics around the whole turbine are also investigated to determine the directionality of the noise emission of HAHT.


1997 ◽  
Vol 119 (3) ◽  
pp. 624-633 ◽  
Author(s):  
B. V. Marathe ◽  
B. Lakshminarayana ◽  
D. G. Maddock

The objective of this investigation is to understand the steady and the unsteady flow field at the exit of an automotive torque converter turbine and inside the stator with a view toward improving its performance. The measurements were conducted in a stationary frame of reference using a high-frequency response five-hole probe, and the data were processed to derive the flow properties in the relative (turbine) frame of reference. The experimental data were processed in the frequency domain by spectrum analysis and in the temporal-spatial domain by ensemble averaging technique. The flow properties (e.g., pressure and velocity) were resolved into mean, periodic, aperiodic, and unresolved components. A velocity profile similar to that of a fully developed flow was observed at all radii. The periodic data in relative reference frame revealed a small separation zone near the suction surface in the core region. The rms values of the unresolved component were found to be significantly higher in this region. The secondary flow vectors show underturning, radially inward flow in the entire passage with a small region of overturning near the separation zone. The overall flow at the turbine exit was nearly two dimensional in nature except in the zone of flow separation. The unsteady flow data show that unresolved and aperiodic components dominate the unsteadiness in the pressure, whereas the periodic components dominate the unsteadiness in velocities and flow angles. Pressure and velocity fluctuations were moderate, whereas the flow angle fluctuations were found to be high. The overall flow at the exit of turbine was found to be highly unsteady.


Sign in / Sign up

Export Citation Format

Share Document