scholarly journals Rapid Adsorption of Acid Dyes Using Cu(II) Thiourea Modified Cellulose Complex

Author(s):  
Amira L. Shafik ◽  
Mohamed Hashem ◽  
El Sayed M. Abdel-Bary

In the present work, the acid dyes namely, eriochrome cyanine R (ECR) and 2-(4-Sulfo phenyl azo)-1,8 dihydroxy-3,6 naphthalene disulfonic acid, trisodium salt (SPADNS) were effectively adsorbed by Cu(II)-thiourea modified cotton fibers (Cu(II)/Tu-MC) complex. FTIR, SEM, thermogravimetric analysis, and potentiometric titration were utilized for characterization. The impact of the fundamental adsorption parameters was systematically investigated. The results reveal that the adsorption of ECR and SPADNS acid dyes occurs via a metal-coordination mechanism. Furthermore, the adsorption process follows the 2nd order kinetic model and Langmuir model adsorption isotherm. The Cu(II)/Tu-MC shows high adsorption capacities of 0.27 and 0.22 mmol. g-1 for ECR and SPADNS, respectively. These findings indicate that the cationization of cellulose fibers with metal ions is a promising and efficient strategy towards enhancing the adsorption of acid dyes.

2021 ◽  
Author(s):  
Amira L. Shafik ◽  
Mohamed Hashem ◽  
El Sayed M. Abdel-Bary

In the present work, the acid dyes namely, eriochrome cyanine R (ECR) and 2-(4-Sulfo phenyl azo)-1,8 dihydroxy-3,6 naphthalene disulfonic acid, trisodium salt (SPADNS) were effectively adsorbed by Cu(II)-thiourea modified cotton fibers (Cu(II)/Tu-MC) complex. FTIR, SEM, thermogravimetric analysis, and potentiometric titration were utilized for characterization. The impact of the fundamental adsorption parameters was systematically investigated. The results reveal that the adsorption of ECR and SPADNS acid dyes occurs via a metal-coordination mechanism. Furthermore, the adsorption process follows the 2nd order kinetic model and Langmuir model adsorption isotherm. The Cu(II)/Tu-MC shows high adsorption capacities of 0.27 and 0.22 mmol. g-1 for ECR and SPADNS, respectively. These findings indicate that the cationization of cellulose fibers with metal ions is a promising and efficient strategy towards enhancing the adsorption of acid dyes.


2016 ◽  
Vol 61 (4) ◽  
pp. 1805-1812
Author(s):  
A. Strkalj ◽  
Z. Glavas ◽  
L. Slokar

Abstract This paper deals with the waste foundry molding sand which originally comes from the casting production. Adsorption of Cu (II) ions on the waste foundry molding sand was studied. Experimental data were processed using adsorption isotherms. Obtained results show that the experimental data are best described by the Langmuir isotherm. The following adsorption capacities are obtained: 7.153 mg/g to 293 K, 8.403 mg/g at 333 K and 9.208 mg/g at 343 K. The kinetics and thermodynamics of the process were analysed. The obtained results indicate that the adsorption process takes place according to the pseudo second order kinetic model with the following constants: 0.438 g/mg min at 293 K, 0.550 g/mg min at 333 K and 1.872 g/mg min at 343 K. The following values of ΔG° were obtained: − 95.49 J/mol at 293 K, − 736.99 J/mol at 333 K and − 1183.46 J/mol at 343 K. The value of ΔH° is − 4.16 kJ/mol and the value of ΔS° is 15.17 J/molK. These results were confirmed by microscopic examinations. The results indicate that the adsorption process of Cu (II) ions on waste foundry molding sand is possible. Results of microscopic examinations show the homogeneity of the surface, which is proof of the chemisorption. Cu (II) ions on the surface of the waste foundry molding sand were detected after adsorption by EDS analysis, which proves the existence of the adsorption process.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 282
Author(s):  
Matej Šuránek ◽  
Zuzana Melichová ◽  
Valéria Kureková ◽  
Ljiljana Kljajević ◽  
Snežana Nenadović

In this study, the removal of nickel (Ni(II)) by adsorption from synthetically prepared solutions using natural bentonites (Lieskovec (L), Hliník nad Hronom (S), Jelšový Potok (JP), and Stará Kremnička (SK)) was investigated. All experiments were carried out under batch processing conditions, with the concentration of Ni(II), temperature, and time as the variables. The adsorption process was fast, approaching equilibrium within 30 min. The Langmuir maximum adsorption capacities of the four bentonite samples used were found to be 8.41, 12.24, 21.79, and 21.93 mg g–1, respectively. The results best fitted the pseudo-second-order kinetic model, with constant rates in a range of 0.0948–0.3153 g mg–1 min. The effect of temperature was investigated at temperatures of 20, 30, and 40 °C. Thermodynamic parameters, including standard enthalpy (ΔH0), Gibbs energy (ΔG0), and standard entropy (ΔS0), were calculated. The adsorption of Ni(II) by bentonite samples was an endothermic and spontaneous process. These results indicated that, of the bentonite samples used, the natural bentonites from JP and SK were most suitable for the removal of nickel from synthetically prepared solutions.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2136
Author(s):  
Najeeb ur Rahman ◽  
Ihsan Ullah ◽  
Sultan Alam ◽  
Muhammad Sufaid Khan ◽  
Luqman Ali Shah ◽  
...  

In this study, Ailanthus altissima sawdust was chemically activated and characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR), Energy Dispersive X rays (EDX), and surface area analyzer. The sawdust was used as an adsorbent for the removal of azo dye; Acid Yellow 29 (AY 29) from wastewater. Different kinetic and equilibrium models were used to calculate the adsorption parameters. Among the applied models, the more suitable model was Freundlich with maximum adsorption capacities of 9.464, 12.798, and 11.46 mg/g at 20 °C, 30 °C, and 40 °C respectively while R2 values close to 1. Moreover, the kinetic data was best fitted in pseudo second order kinetic model with high R2 values approaching to 1. Furthermore, adsorption thermodynamics parameters such as free energy, enthalpy, and entropy were calculated and the adsorption process was found to be exothermic with a value of ∆H° = −9.981 KJ mol−1, spontaneous that was concluded from ΔG° values which were negative (−0.275, −3.422, and −6.171 KJ mol−1 at 20, 30, and 40 °C respectively). A positive entropy change ∆S° with a value of 0.0363 KJ mol−1 indicated the increase disorder during adsorption process. It was concluded that the activated sawdust could be used as a suitable adsorbent for the removal of waste material, especially dyes from polluted waters.


2021 ◽  
pp. 174751982198996
Author(s):  
Moussa Abbas

Among the different photocatalysts, TiO2 ( Eg = 3.1 eV, zero charge point (pHpzc = 6.3), and surface = 55 m2/g) is currently the most efficient and the most studied semiconductor due to its strong photocatalytic activity, non-toxicity, and chemical stability. The elimination of DR-80 on TiO2 is studied by adsorption in batch mode and by application of heterogeneous photocatalysis onto TiO2 under UV irradiation. The effects of contact time (0–60 min), initial pH (3–11), dose of the adsorbent (0.5–3 g L−1), and DR-80 concentration (40–60 mg L−1) on the adsorption of DR-80 by TiO2 are studied for optimization of these parameters. The kinetic parameters, rate constants, and equilibrium adsorption capacities are calculated and discussed for each applied theoretical model. The adsorption of DR-80 is well described by the pseudo-first-order kinetic model. The fitting of the adsorption isotherms shows that the models of Langmuir and Temkin offering a better fit and an adsorption 64.102 mg/g at 25 °C of DR-80 are eliminated. The results showed that the photocatalytic efficiency strongly depends on the pH while the initial rate of photodegradation is proportional to the catalyst dose, and becomes almost constant above a threshold value. It was found that the photodegradation is favored at low DR-80 concentrations in accordance with the Langmuir–Hinshelwood model with the constants Kad = 6.5274 L/mg and KL–H = 0.17818 mg L−1 min. However, the adsorption is improved for high DR-80 concentrations. It is found that the degradation depends on both the temperature and the pH with a high elimination rate at high temperature. The photocatalyst TiO2 has a better activity for the degradation of DR-80, compared to some commercial catalysts that have been described in the literature.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3575-3595
Author(s):  
Wanting Li ◽  
Ruifeng Shan ◽  
Yuna Fan ◽  
Xiaoyin Sun

Desethyl-atrazine (DEA) is a metabolite of atrazine that exerts a considerable influence on the environment. In this study, tall fescue biochar was prepared by pyrolysis at 500 °C, and batch experiments were conducted to explore its effect on the adsorption behavior of DEA in red soil, brown soil, and black soil. The addition of biochar increased the equilibrium amount of DEA adsorption for the three soil types. A pseudo-second-order kinetic model most closely fit the DEA adsorption kinetics of the three soils with and without biochar, with a determination coefficient (R2) of 0.962 to 0.999. The isothermal DEA adsorption process of soils with and without biochar was optimally described by the Freundlich and Langmuir isothermal adsorption models with R2 values of 0.98 and above. The DEA adsorption process in the pristine soil involved an exothermic reaction, which became an endothermic reaction after the addition of biochar. Partitioning was dominant throughout the entire DEA adsorption process of the three pristine soils. Conversely, in soils with biochar, surface adsorption represented a greater contribution toward DEA adsorption under conditions of low equilibrium concentration. The overall results revealed that the tall fescue biochar was an effective adsorbent for DEA polluted soil.


2012 ◽  
Vol 602-604 ◽  
pp. 1211-1214
Author(s):  
Zhi Wen Luo ◽  
Zhong Chen ◽  
Su Hong Liu

Diatomite was modified by microwave treatment to increase their utilization value, using modified diatomite to treat ammonia-nitrogen wastewater. The experiment indicated that adsorption process of modification of the modified time by microwaves and microwave power is the impact of ammonia adsorption of the main factors. Through modification experiments by raising the capacity of diatomite adsorption ammonia nitrogen, adsorption of ammonia nitrogen increase over one time. Langmuir and Freundlich isotherms were used to fit and the experimental results show that the modified diatomite adsorption onto ammonia nitrogen accords with Langmuir and Freundlich isotherm. The maximum theoretical adsorption capacities are 5.81083mg/g.


2020 ◽  
Vol 82 (10) ◽  
pp. 2159-2167
Author(s):  
Ru-yi Zhou ◽  
Jun-xia Yu ◽  
Ru-an Chi

Abstract Double functional groups modified bagasse (DFMBs), a series of new zwitterionic groups of carboxyl and amine modified adsorbents, were prepared through grafting tetraethylenepentamine (TEPA) onto the pyromellitic dianhydride (PMDA) modified bagasse using the DCC/DMAP method. DFMBs' ability to simultaneously remove basic magenta (BM, cationic dye) and Congo red (CR, anionic dye) from aqueous solution in single and binary dye systems was investigated. FTIR spectra and Zeta potential analysis results showed that PMDA and TEPA were successfully grafted onto the surface of bagasse, and the ratio of the amount of carboxyl groups and amine groups was controlled by the addition of a dosage of TEPA. Adsorption results showed that adsorption capacities of DFMBs for BM decreased while that for CR increased with the increase of the amount of TEPA in both single and binary dye systems, and BM or CR was absorbed on the modified biosorbents was mainly through electrostatic attraction and hydrogen bond. The adsorption for BM and CR could reach equilibrium within 300 min, both processes were fitted well by the pseudo-second-order kinetic model. The cationic and anionic dyes removal experiment in the binary system showed that DMFBs could be chosen as adsorbents to treat wastewater containing different ratios of cationic and anionic dyes.


2010 ◽  
Vol 171-172 ◽  
pp. 41-44
Author(s):  
Xiao Cun Xiao ◽  
Gai Xia Fang ◽  
Er Li Zhao ◽  
Lv Bin Zhai ◽  
Jun Shuai Shi

The objective of this study is to assess the environmentaly friendly Ni(II) adsorption from synthetic wastewater using Pseudomonas alcaligenes biomass (PA-2). The ability of PA-2 to remove the Ni(II) ions was investigated by using batch biosorption procedure. The effects such as pH, dosage of biosorbent, Ni(II) initial concentration and sorbate–sorbent contact time and agitating speed on the adsorption capacities of PA-2 were studied. Biosorption equilibriums were rapidly established in about 60 min and the adsorption kinetics followed the pseudo-second order kinetic model. The maximum Ni(II) adsorption capacity determined from Langmuir isotherm were 82.23 mg/g PA-2 at pH 5.0, at 25±2°C and shaker speed 150 rpm, respectively. The carboxyl , hydroxyl and amino groups of the PA-2 were involved in chemical interaction with the Ni(II) ions depicted by Fourier transform infrared spectroscopic (FTIR) results. The study points to the potential of new use of Pseudomonas alcaligenes biomass as an effective biosorbent for the removal of Ni(II) and from environmental and industrial wastewater.


2020 ◽  
Vol 10 (9) ◽  
Author(s):  
G. B. Adebayo ◽  
H. I. Adegoke ◽  
Sidiq Fauzeeyat

Abstract Hexavalent chromium was adsorbed from aqueous solution with three prepared and characterized adsorbents, namely goethite (G), activated carbon (AC) and their composite (GAC). The goethite particle was synthesized using the precipitation methods, and activated carbon was prepared from the stem bark of Daniellia oliveri tree and composite in a ratio of 1:5 goethite–activated carbon. The adsorption capacities of G, AC and GAC for Cr(VI) are 6.627, 5.455 and 6.354 mg/g with 0.02 g adsorbent within contact time of 60, 180 and 30 min for G, AC and GAC, respectively, for Cr(VI) adsorption at optimum pH of 3. The isotherm studied was best explained by Langmuir adsorption isotherm and fitted with the pseudo-second-order kinetic model. Desorption studies showed that 1.0 M HNO3 was a better desorbing agent than 0.1 M HNO3, 0.1 M HCl and 1.0 M HCl. Chromium was most desorbed (94.60% in Cr//G using 1 M HNO3). The result obtained revealed that goethite and activated carbon produced are favourable adsorbents and the composite of the two adsorbents gives a more favourable, economical and affordable adsorbent for the clean-up of heavy metal contamination.


Sign in / Sign up

Export Citation Format

Share Document